January 1986 LIDS-TH-1527

3]
Te)
N
™M
O
-
h
Q
<

A SCHEDULE-BASED APPROACH FOR FLOW-CONTROL

IN DATA COMMUNICATION NETWORKS

by

Utpal Mukherji

This report is based on the unaltered thesis by Utpal Mukherji, submitted
in partial fulfillment of the requirements for the degree of Doctor of
Science at the Massachusetts Institute of Technology, Laboratory for
Information and Decision Systems with partial support provided by the
Advanced Research Projects Agency under contract ONR/N00014-84-K-0357

and the National Science Fowidation under grant NSF-ECS-8310698.

DTIC

ELECTE
JAN 23 1986

*‘ A

IRl S

.

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Wi EnC. VY

SECUR'TY CLASSIFICATION OF THIS PAGE (When Dete EZntersd) UNCLASSIFIED
READ INSTRUCTI
REPORT_ DOCUMENTATION PAGE BEFORE comsmgup?oau

2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER

AD A6 3 253

P ——————————
1. REPORT NUMBER

4. TITLE (and Subcitie) S. TYPE OF REPORT & PERIOD COVERED
A SCHEDULE-BASED APPROACH FOR FLOW-CONTROL ' Thesis
IN DATA COMMUNICATION NETWORKS
S. PERFOAMING ORG. REPORT NUMBER
-TH-1527
7. AUTWOR(s) T. CONTRAGCT OR GRANT NUMBER(S)

DARPA Order No. 3045/2-2-84
Amendment #11

Utpal Mukherji
P T ONR/N00014-84-K-0357

3. PERFORMING ORGANIZATION NAME AND ADDAESS 1. ::ggl:g;!:iﬁggrg- n'::':non‘EE;’ TASK
Massachusetts Institute of Technology Program Code No. S5T10
Laboratory for Information and Decision Systems ONR Identifying No. 049-383
Cambridge, Massachusetts 02139

TCQN?MLL[NQ QFFICE NAME AND ADORESS 12. REPORT DATE
Defense Advanced Research Projects Agency January 1986

! 1400 Wilson Boulevard 3. NUMBER OF PAGES

1 Arlington, Virginia 22209 117
T4. MONITORING AGENCY NAME & ADDRESS(I! dilferent from Controlling Otfice) 18. SECURITY CLASS. (el this repart)
Office of Naval Research
UNCLASSIFIED

. Information Systems Program
2 Code 437 . ['Sa. DECLASSIFICATION/ OOWNGRADING
SCHEDULE

Arlington, Virginia 22217
16. CISTRIBUTICN STATEMENT (of this Report)

A

i Approved for public release: distribution unlimited

L 17. OISTRIBUTION STATEMENT (of the sbetract entered in Jlock 20, If different from Report)
:

18. SUPPLEMENTARY NOTES

19. KEY WORODS (Continue on reverse side If necessary and Identtty by dlock aumber)

|

20. ijkls?RACT (Continue on reveree eide If necessary and identity by block number) L

An approach for achieving user-session packet throughput guarantees and packet
intranetwork delay limits is described. Both objectives are important for packet-
ized voice calls. The approach permits flexible usage of link capacity by ses-
sions, which is important for data sessions. Throughput is guaranteed to a ses-
sion at links in its path by scheduling priority-slots in link-frames for trans-
mission. An extenstion of end-to-end windowing limits.the intra-network delay
for a session to the sum of, first, the product of the frame-time and the ses-
sion's window-size, and, second the session's priority-slot schedule-delay.

i ———— R — R

DD 537", 1473 eoiTion oF 1 nov €8 1S ossoLETE : Ly reyf

PRSI O STaeeeat SECURITY CLASSIFICATION OF THIS PAGE (Whan Dara Bntered)

B, E{; Ny '&u-x. \E ‘«E.‘-‘.,'\ et GG 00 T gl L 8
bt Heh a4 ‘hln?'\:n :.x”c.‘{m.';m'i.;‘u5"3:5.,‘:5.,1--,’}«.".% o 68

W ,
'!:".::
Bk L9 20. (Continued) _
'd' = an NP-completeness result is proven, showing, for general networks, that
‘ 35 the scheduling of priority-slots to obtain minimum sum of schedule-delays
-\.}3 is algorithmically hard. Minimun-delay scheduling algorithms for special
: "',;- network classes, and a scheduling heuristic for general networks, are

: presented. For Poisson packet generation at session rates less than
- throughput guarantees, limited simulations suggest that low mean values
; 1o of packet end-to-end delays, relatively insensitive to choice of window-
I\-’. sizes, are obtained even at small but non-zero window-sizes.
0
}& 13
W0 . - . -

|

9“‘)
o .
1N
) e —
oY . . — ‘
!u ?"‘zl ﬁ

a

0
r_‘r'};';_'u

g
LA

. STl
N s B B3
" 3 e B
SRV Pt
1]
)
')
1
, {
! ;
! al
. \.t X
B ' .
i
'
{
'
' i
}
'
1
|
i
s nSBhesntl afihmenaihenen st

-
o
.

o
———

-
) E:jfl

=

o o
AR

AN

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

. et ot wm— . - s e e % E—— S e e

=
|
‘."

- }‘ﬁ" 3

NI T ¢ TRIG KA Loty
b ettty a0 b -':‘?’ e o O RO T, AP

ol

AP PN p¢‘1- -‘rr*—(-;\. < '.1;"'
AR e T e L

[1 |- Al Lk (W R LI P et e 4 g oo o e AP R e o

0
'i_‘l"
,;;‘{. A SCHEDULE-BASED APPROACH FOR FLOW-CONTROL
Bl
‘ IN DATA COMMUNICATION NETWORKS
i
RSt N
[
:éo} UTPAL MUKHERJI
"x"'a
. B.Tech., Indian Institute of Technology, Bombay
s (1980)
!gi’!:
;“?' S.M., Massachusetts Institute of Technology
il (1982)
fi.t).
E.E., Massachusetts Institute of Technology
b (1984)
b
! SUBMITTED TO THE DEPARTMENT OF
a5 ELECTRICAL ENGINEERING AND COMPUTER SCIENCE
_;"" IN PARTIAL FULFILMENT OF THE REQUIREMENTS
'.I
o FOR THE DEGREE OF
3 DOCTOR OF SCIENCE
Uy at the
;;“ N MASSACHUSETTS INSTITUTE OF TECHNOLOGY
o
‘::k N ' February, 1986
+id),
‘:'B.i (© Massachusetts Institute of Technology, 1986

4
R P

Signature of Author a A . izt
Department of Electrical Engineering and Computer Science
//) January 6, 1986
Mot 9 <
Certified by b A" ; ‘Z'/Kj e

Professor Robert G. Gallager
Thesis Supervisor

Accepted by

Professor Arthur C. Smith
Chairman, Departmental Committee on Graduate Students

RTINS e T IR N &)
S e S

A s " A N L‘_‘:‘ . \“.“.‘-“'.‘
WIS AN SIS Y

: A Schedule-Based Approach for Flow-Control
in Data Communication Networks

by
Utpal Mukherji

Submitted to the Department of
Electrical Engineering and Computer Science
on January 6, 1986
in partial fulfilment of the requirements
for the Degree of Doctor of Science

Abstract

An approach for achieving user-session packet throughput guarantees and packet intra-
network delay limits is described. Both objectives are important for packetized voice calls. The
approach permits flexible usage of link capacity by sessions, which is important for data ses-
sions. Throughput is guaranteed to a session at links in its path by scheduling priority-slots in
link-frames for transmission. An extension of end-to-end windowing limits the intra-network
delay for a session to the sum of, first, the product of the frame-time and the session’s window-
size, and, second, the session’s priority-slot schedule-delay. An NP-completeness result is
proven, showing, for general networks, that the scheduling of priority-slots to obtain mini-
mum sum of schedule-delays is algorithmically hard. Minimum-delay scheduling algorithms
for special network classes, and a scheduling heuristic for general networks, are presented. For
Poisson packet generation at session rates less than throughput guarantees, limited simulations

suggest that low mean values of packet end-to-end delays, relatively insensitive to choice of
window-sizes, are obtained even at small but non-zero window-sizes.

Thesis Supervisor: Dr. Robert G. Gallager
Title: Professor of Electrical Engineering

Accesion For l

NTIS CRAQI N
DTIC TAB
Ur.annouced
Justitication o o

Avail and [or
Special

3 - e —
7 i Aliry Availability Codes
Sy IED
W3

- Dist

¢ '*'
i
1!y
E:,' " Acknowledgements
!
s , I wish to thank Professor Robert Gallager, my thesis supervisor, for having so kindly
\j' provided to me encouragement, guidance, suggestions, ideas, and support, during the course
R of my research for this thesis. I am most grateful for having had this opportunity of learning
: " from him, for the keen interest he has taken in my progress as a student and in my interests
;' for the future, and for much time and great patience that he has always had for me.
i)

| I would like to thank Professor Dimitri Bertsekas, Professor John Tsitsiklis, and Pro-
‘t‘h‘: . fessor Alexander Rinnooy Kan, my thesis readers, for having given of their time and knowledge
\:;::\: for my benefit. The many questions put to me by Professor Bertsekas, especially those con-
’t"' cerning Chapters 4 and 1, have been most helpful to me. Professor Tsitsiklis I would also like
fﬁ to thank for many valuable discussions and suggestions.
oy
r‘":; I would also like to thank Professor Michael Sipser for his assistance in sharpening my
i ideas for Section 3.2 of this thesis report.
: ::.
2 t I thank Ellen Hahne, fellow-student and office-mate, for having graciously shared with
ks me ideas from her thesis research on flow-control. My many discussions with her have had
’é,.r their influence on this thesis, and her review of the Introduction has been especially helpful.
‘;.1 I have also benefited from consultations concerning this thesis with Professor James
; Orlin, Professor Pierre Humblet, Dr. Moshe Sidi, Professor Thomas Magnanti, and Professor
'E'S., Christos Papadimitriou. I thank them all. Professor Humblet I would also like to thank for
i:';ﬁ being readily available for consultation on many other occasions during my studies.
N This research was conducted at the Laboratory for Information and Decision Systems,
"' and I gratefully acknowledge the support provided by the Defence Advanced Research Projects
4 ,:;, Agency under Contract ONR/N00014-84-K-0357 and the National Science Foundation under
Loy Grant NSF-ECS-8310698.

; v

N
"Wy,
wWad

\l$ Y - S N T T g A P I I S S SR R S) AR T R RN T RO T O
» X W, o) < A A A N P AR R I Y N A B el I I Tl S
"»l'xtil".‘fl. b 2 A i b " YYD L LSRN REAY e A B \(iL\-.p.'L- S oag s R s RS

LT adia 4

I wish to thank Professor Sanjoy Mitter, Director of the Laboratory, for much encour-
agement and keen interest in my progress in research. I would like to thank Professor Alvin
Drake, my faculty counselor, for his understanding and able guidance, especially during the
early stages of my graduate program. I would also like to thank Professor George Verghese,

my master’s thesis supervisor, for his encouragement and interest throughout my studies.

I take this opportunity to thank Carey Bunks, Jerry Prince, and System Manager Bob
Bruen, for their assistance in setting me up on the Laboratory’s new computer system. I thank
Arthur Giordani for his expert drawing of the figures for this report. I also thank Jean Regnier,
John Spinelli, and Isidro Castineyra, for consultations during the text-editing process for this
report on the new type-setting system, and Nancy Young for friendly help in arranging many

meetings.

It has been a pleasure to keep the company of my fellow-students in the Laboratory
including, among others, Tally Altes, Erdal Arikan, Carey Bunks, Isidro Castineyra, Julio
Escobar, Eli Gafni, Ellen Hahne, Dan Helman, Patrick Hosein, Joe Hui, Atul Khanna, Jim
Krause, Jay Kuo, Whay Lee, Christophe Pagezy, Abhay Parekh, Jerry Prince, Jean Regnier,
Jim Roskind, Clint Roth, John Spinelli, Darius Thabit, Ed Tiedemann, Kevin Tsai, Paul
Tseng, Paul Wiley, and Albert Wong. I have especially enjoyed many discussions with Ellen
Hahne, Erdal Arikan, Jean Regnier, Isidro Castineyra, Jim Krause, and Kevin Tsai.

I also wish to thank, among others in my Department or Laboratory, Professor John
Kassakian, Professor Alan Oppenheim, Professor Robert Kennedy, Professor Martin Schlecht,
Dr. Michael Slepian, Dr. Ronald Williams, and Evangelos Milios, for their assistance and

interest.

Finally, many thanks are due to many other students and members of the M.I.T.

community, for helping make my stay here an enjoyable one.

5 .

B

*

0

Y

:’: Table of Contents

34

. Page
"4 N 713 2.V AR 2
: Acknowledgements cciiiiiiiiiiiiii i i et e 3
f List of Figures.t i 7
: P Chapter 1 Introduction....ouvutiuiiiinineieeittieseeereeeoranterenasnssscncsssessorsossosanns 8
R .) 3T Y LT 1o 8
:: 1.2 Background . ..oooiiiiiiiiiiieit i e e et 9
K) R 20 1 12
;:: Chapter 2 The Schedule-Based Scheme: Packet-Throughput Guarantees

o with Upper-Bounded Packet Intra-Network Delays.................ccovvviinin., 14
: P20 B 1113 20T U1 T T, W 14
2.2 Realization of throughput guarantees..............c..cciiiiiiiiiiiiiiiieinnnnnn, 15
= 2.3 Upper-bounding of intra-network packet-buffering............................o.l 15
; 2.4 Upper bound for packet intra-network delayccceiiiiiiiiii., 17
:’- Chapter 3 Scheduling of Priority-Slots:

i An NP-Completeness Result and Some Algorithms................................ 20
1% K3 B 3 Lo T 5T N 20
1.' 3.2 An NP-completeness resultccoiiiiiiiiiiiiiiiiiiirnenrnerneanennnnnss 20
Y 3.3 Some scheduling algorithms. ..ottt ittt i 24
.“ Chapter 4 Mean Packet Delays for Poisson Packet Generation Model:

\ :?-: Simulation Results for Some Networks.............coooiiiiiiiiiiiiiiiii s, 32
.0' I R £ 1 T 32
o 4.2 NetWork L. ... uiitiiiitiiiiitiiirirtenenrerarrereresessnensosnsanesensnsnnennnns 34
9 4.3 NetWOTK 2. ... itiiiitiiiireiiretneteeeeenennneenrennsaensssnsensosneesssenenenens 37
X ! 4.4 NetWorK 3. ... ittt ittt ieiietettienennreeinenesneesensensrnenssnsanennes 40
1

oW Chapter 5 ConclUSION ... v\ttt ittt ittt it iae ittt ettt eteeeeaeneeeeeaetrnenanenaens 52
) fr‘ ADPENAICES ..ttt ittt e e e e, 57
‘_‘C: A Proof of Upper Bound, of Section 2.4, for Packet Intra-Network Delay............. 57
'\: B A Procedure for Transforming from Non-Integer to Integer Schedules

<) without Increasing the Sum of Schedule-Delayscooiiiiiiia..t. 61
"q C Corollaries of the NP-Completeness Result of Theorem 3.1 63
3

¥ 5

3,

AL .’\-\h - ...‘ \.‘4\.* > e 2 " 3] fl(‘_\-"'-'-'-"'n' w\‘-*v -'.< “-‘h‘-‘;"-'.“"-"-"k"'-,'.',".'.','_:. '; .
5“..‘ T““ . " *3!2"."5‘52‘--« "' o u PPV AN .

Pl

‘: . g’ D The Scheduling Algorithm, of Section 3.3,

""5 for Networks with Triangular Link-Precedence Graphs..............ccocovnvennn.. 65
’ E Proof of Inequality 3.6...... e ettt et 70
F The Expected Waitihg-Times at a Slotted Link

\ "" for Some Packet Arrival Processescoviiiiitiiiiiiiiiiiiinienaanas .79

- - . w -' .l ‘w e .' e “e > ' I h \ .I 4 \.“
u..',/.“"’ e .o .-. ~. < X 1- - (. .\ .(. . - e Ce ey
B Tt s A ..\..J._J .z:‘@.ryl .:,um.&[m- :J’z_‘.r""-".z‘.m NaNIR

......

el List of Figures

o Figure Page

W

2.1 The token usage algorithm for a session.........ccovvveieiiiiiiiiiiiiinineennn.. 17

e S5 a2

. 3.1 The structure of the network I in the proof of theorem 3.1 23
§ 3.2 The link-precedence graph for anetwork...........cccoiiiiniiiiiiineaniinnennnn 26

3.3 A zero-wait schedule constructed using algorithm A¢ree
= for the network of figure 3.2.......c.i ittt i et 27

] 41 Network 1......cccvvvvunnn. e e e e et e e s aaeeaneeneanen e aae e e rean 35

B NEtWOIK 2.\ttt iiiiiiinieinireeneeieneesannnnasossrenssnesnsessnnasesasnonannnnsns 38

a s s e

PSS

+
]

N h n S R S AR L L
! ¢lt l!: .:'l‘.!'bg'l!:'la),l ." ¥ 3 %

. .; .;f.’ﬁ--".q;ﬂ' V‘%“\’-‘r* ‘;&-'3 .'

W
":E Chapter 1
| Introduction

1.1 Introduction
? ’_- Users of a data communication network set up sessions to communicate over the net-
z":\: work. The messages generated by a user are split into packets at the source, and then carried
h ' through the network to the user’s destination by the user’s session. Packets belonging to a
% ‘ session share, with those belonging to other sessions, the transmission capacities of the links
J; and the storage and switching capacities of the nodes. There is usually much short-term un-
-': certainty in the packet generation rates for the sessions; this can overload the capacities of the
._ network and hence cause instability in the network. The research reported here is aimed at
5‘: preserving well-defined flows of session packets, while permitting flexible usage of link trans-
’ mission capacities by the sessions.
:‘; The emphasis in most of the work reported in the flow-control literature, as surveyed
\ by Gerla and Kleinrock [13] for example, is on the control of storage congestion. However,
s this research does not emphasize this problem since storage congestion is becoming less of a
:n(‘ problem with the rapidly decreasing cost of providing more storage. Indeed, packet through-
;:; puts and delays, for sessions in networks that use flow-control schemes that emphasize storage
' congestion, are difficult to predict, especially so in the short-term. This research also assumes

that the switching capacities of the nodes are large enough to enable full utilization of link

transmission capacities. This is an appropriate assumption since processing costs have been

decreasing faster than link communication costs.

There are many types of sessions, such as packetized voice, that have relatively stringent
and well-defined packet throughput or delay requirements. There is a need for schemes that
support sessions for such users. The schedule-based approach defined in this thesis is proposed

as a possible means of meeting this need.

O R R Ty N - .\ .\ .\{ ‘ Tots \\\\ ---------- .\- {;{C
t Y- X ﬁmnu_&u_ﬂ.{_ﬂ.‘m o _z.\:Lx. .\..m.....lm..um.‘\.* L.l\.:\,- \LL‘ u‘la-} 1.»..1.‘.3,.;. ,a..]_n..‘.a..fi : _-.fj

A yakdie b hia din WENETT T T T hlacibachias Aiasondiondiinghinsiiat Aol intlnti i ahinbt il AN Al
)
Lot
. ."

AN
ACYN
iﬁ, 1.2 Background

S _ Some flow-control problems taken from the literature are discussed in this section in

" *.\3 relation to this thesis. The discussion is set first in the context of conventional data sessions,

i ;3 then in the context of packetized voice sessions, and finally in a more abstract context.

; Peak packet generation rates for interactive data sessions greatly exceed their average

%:{t rates. If link capacity sufficient to accommodate sessions’ peak rates were to be dedicated to

W L'.ﬂ sessions, the number of sessions that could be accommodated would be severely limited by

i X 2 available link capacity. On the other hand, if link capacity just sufficient to accommodate
::_:";3‘; sessions’ average rates were to be dedicated to sessions, large amounts of packet buffering

: 1 and delay would be required for each session to average the peak levels of its activity over its

', % inactive periods. Occasionally, packets for a session would be greatly delayed while capacity
x-" dedicated to other channels lay idle. Flexible usage of link capacity is desirable, particularly on

:“.1': these occasions. Hence, as with most data network flow-control schemes, the schedule-based

- approach does not dedicate link capacity to data sessions.

-

N:_h Nodal storage limits in data networks can sometimes constrain the usage of link ca-

: " pacity by sessions. A session may monopolize the storage capacity at its source node, locking

1‘_ Y. out packets for sessions that are in transit at that node. Lockouts of sessions at several nodes

. J:,: in a cycle can result in deadlocks where no packets are successfully forwarded by any session. 1

::::;: However, such deadlocks can be resolved by reservation of some buffers for appropriately de-
a fined packet classes (Raubold and Haenle [28]). Deadlocks should become rare with decreasing

:(storage costs, and with the use of window flow-control schemes. Window flow-control is used

..J' in the schedule-based approach, and is outlined below.

LN

$:§ A path for routing packets in first-come first-served order from source to destination is

';\'f assigned to each session, and the number of packets outstanding for the session along its path
E:.; is limited as follows. In end-to-end window flow-control, a session can have at most a number

‘.}-, of packets equal to its window-size, for which its source node has not received packet reception

-

t’ acknowledgements from its destination node (Cerf and Kahn [5], /- "wja [1]). In node-by-node

: %«‘.;
SN 9

window flow-control, the same constraint applies between consecutive nodes in a session’s path
(Rinde and Caisse [30]). In order that nodal storage limits are not exceeded, window-sizes for
the sessions should be chosen so that each node can allocate, to each session using it, a number
of packet buffers equal to the session’s window-size. However, proper choice of window-sizes
is difficult because the packet throughput and mean packet delay for each session depends
in a complicated manner on the set of all window-sizes chosen (Reiser {29]). The schedule-
based scheme makes the problem of choosing window-sizes a less critical one by providing a
throughput guarantee, which is not subject to window constraints, to each session. A small
session window-size results in small session packet buffering and delay at intermediate nodes

in the session’s path without any change in the session’s throughput guarantee.

The burstiness present in conventional data sessions is also present in voice calls to a
lesser degree, since the calls alternate between talk-spurts and silences. As an example, the
Time Assigned Speech Interpolation (TASI) system supports a larger number of voice calls on a
single link than would have been possible if voice calls had no silences, by inserting talk-spurts

for calls in the silence periods of other calls (Bullington and Fraser (4]).

The burstiness of voice calls has also prompted experiments in voice communication
over data networks (Weinstein and Forgie [32]). During talk-spurts, voice caiis generate packets
at regular intervals that depend on the bit-rate used for voice coding, and have corresponding
packet throughput requirements (Gold [14]). Packet transit delays from source nodes to desti-
nation nodes are also required to satisfy limits that are set so that, at the destinations, packets
can be played back at regular intervals. However, large voice packet buffering and delay can
result at intermediate nodes in a call’s path as link loads approach link capacities. Embedded
coding of voice may be used, so that excess delay can be relieved by discarding packets that
contain less significant portions of the coded voice signal, at both source and intermediate
nodes (Bially, Gold, and Seneff [2]). The schedule-based approach limits packet transit delays
from source nodes to destination nodes, and may be a simple approach to limiting voice packet
delays. Further, at the possible cost of some additional pre-transmission buffering and delay, a

large number of voice calls between the same source and destination can be multiplexed onto

10

A

g

,-’ T,
8
T !

s
.
),

Ay Xy
PR

v
¥

a single schedule-based session that has an appropriately sized throughput guarantee, as in

TASI (Weinstein and Hofstetter [33]).

Link-frames have been used in time-division multiplexed circuit-switched voice net-
works, where a link-frame consists of time-slots that are assigned to the voice calls using the
link, and the frame-time duration is the same on all links. Similar link-frames have also been
proposed for networks that carry circuit-switched voice and packet-switched data, where the
boundary defining the set of voice slots in a frame is moved in order to allow data packets to use
voice slots that have not been assigned to voice calls (Coviello and Vena [7]). Data throughput
would be increased and data delay decreased if the frequent silences within voice calls were
detected, as in TASI, and the silences were used to transmit data packets (Bially, McLaugh-
lin and Weinstein (3], Williams and Leon-Garcia {34]). This is possible in the schedule-based

approach, where both data and voice are assumed to be packetized.

The possibility of integrating conventional data sessions and packetized voice calls in
data networks has mativated flow-control studies in a more general context. Several flow-
control algorithms have been devised that achieve fair allocation of network link capacity to
sessions, in the sense of maximizing the minimum session allocation (Jaffe {21], Hayden (18],
Gafni [9], Mosely [24], Gafni and Bertsekas [10]). These algorithms are effective under condi-
tions where sessions are set up and disconnected infrequently. The ability of these algorithms to
track changes in session activity throughout a network, maximize the minimum active-session
allocation, and implement these allocations, may be limited by excessive time-requirements
for measurement and communication relating to the algorithms (Oshinsky [26], Mosely [24]).
Round-robin scheduling of sessions for packet transmission at links in the network, in conjunc-
tion with conventional window flow-control, has been proposed as a simple real-time approach
for achieving this objective (Hahne [17)). The schedule-based approach does not necessarily
maximize the minimum session allocation, but is a Similar real-time approach that achieves

fairness in the sense of providing throughput guarantees to the sessions.

11

In any flow-control approach, the mean packet end-to-end delay for a session, from
generation at source to reception at destination, grows with increasing levels of transmission
capacity utilization on the links in the session’s path. Proper routing of sessions at set-up time,
and control of session set-up attempts, are required for maintaining balanced and limited link
utilizations (Schwartz and Stern [31]). The integrated routing and control of session set-up for
data, voice, and data and voice together, has been the subject of some research (Golestaani [15],
Ibe [20], Gafni [9]). The schedule-based flow-control approach should be used in conjunction

with an appropriate routing and control algorithm.

A scheduling problem relating to the packet transit delay limits in the schedule-baéed
approach is considered in this thesis. This work falls in the area of deterministic, time-periodic
scheduling. Some work has been reported in this area (Orlin [25]), for example in the context of
task scheduling in pipelined computers (Kogge (23], pp. 71-112) and of production scheduling
in manufacturing flow-shops (Hitz [19], Graves et al. [16]).

1.3 Oautline

Some physical and architectural assumptions are inherent in the schedule-based ap-
proach. First, each link can reliably transmit a known amount of information in a link-frame.
Frames occur periodically on each link at intervals of one frame-time, where the frame-time
is the same on all links. Second, each session has a path set up in the network at session
set-up time, along which packets for the session can be routed. Packets for each session are
transmitted in the same order on all links in the session’s path. Third, information can be

communicated to a session’s source from its destination for flow-control purposes.

The schedule-based approach is described in Chapter 2 of this report. It is shown that
the scheme provides each session in the network with a packet throughput value up to which
throughput is guaranteed, as well as an achievable upper bound on the intra-network delay
that a packet incurs in the network after starting transmission on the first link in its path.
The throughput guarantee is obtained by assigning transmission priority to the session, on

each link in its path, in certain time-slots in the link-frames. The upper bound on packet

12

- i -a k- el -

intra-network delay is obtained by, in addition, limiting the total number of packets for the
session that can be in transit in the network at any given time, using an extended version
of end-to-end windowing. The delay bound is shown to be a sum of, first, the product of
the session’s window-size and the frame-time, and, second, the session’s schedule-delay. The

schedule-delay is a function of the positions of the session’s priority-slots in the link-frames.

The scheduling of priority-slots, so as to result in low values of schedule-delays, is
considered from an algorithmic point of view in Chapter 3. This problem is shown to be hard
for general networks, as is the case for general instances of many other scheduling problems, by
proving an NP-completeness result. (Garey and Johnson [12] provide a guide to the theory of
NP-completeness.) However, simple and efficient algorithms that result in minimal schedule-
delays are presented for special classes of networks. A scheduling heuristic, that can be applied

to general networks, is also presented.

Mean packet delays observed in simulations of some networks, with session packets
generated in Poisson processes at known rates that are less than the throughput-guarantees,
are presented in Chapter 4. The simulation results suggest that low mean values of packet
end-to-end delays, from generation at source to reception at destination, are obtained in the
schedule-based scheme even with small, but non-zero, window-sizes. Lower values of schedule-
delays result in lower mean values of packet intra-network delays, but do not necessarily change
mean packet end-to-end delays. In contrast with the low sensitivities of mean end-to-end delays
to changes in window-sizes for the schedule-based scheme, these sensitivities for conventional
end-to-end windowing, with first-come first-served transmission of packets at links, are observed

to be relatively large.

This thesis report concludes, in Chapter 5, with additional comments on the schedule-

based approach.

13

O oY L ade aah agty L e o agd s g TR ErT Y TR O

Chapter 2

S The Schedule-Based Scheme :
)-‘.&

. Packet-Throughput Guarantees with Upper-Bounded Packet Intra-Network Delays
4“3

.\ "

2.1 Introduction

.1: Throughput guarantees for sessions are realized in the schedule-based scheme by defin-
1 i igni
{. ing a network-wide frame-time, and, at each link in each session’s path, assigning packet trans-
o mission priority to the session in a time-periodic manner, once per frame-time. An extended
X
s::’.: version of end-to-end windowing maintains the throughput guarantee for each session, while
P . .
::. . upper-bounding the intra-network packet buffering for the session. The throughput guarantee
Lt
- and bounded buffering, together, result in an upper bound on the packet intra-network delay
s for the session. These operations are explained in this chapter, assuming the following network
; ﬂf:h
P model.
. a) All packets, for all sessions, are the same number of bits in length. Each link is
)
3 :j. time-slotted, with slot duration equal to the packet transmission time. Packet transmissions
:i‘ begin at the start-times of slots. Links are error-free, and can reliably communicate packets,
ot one per time-slot. All links are equal in bit-speed, so that the slot duration on each link is the
’ “ same. This duration is one time-unit.
A
&
' b) All packets belonging to a session are routed along the same path in the network,
{:ifj where the path is chosen at session set-up time. The packets belonging to the session are
' }\- transmitted in the same order on all links in the session’s path. Packet propagation delays at
“,g_ all links, and packet switching delays at all nodes, are zero.
4 Iy
i'g c) Window-tokens are returned to a session’s source node from its destination node,
R for all sessions.
o
AN
L
%

Y -

. & VAR R Ty ARRTR R
BROE - S5 hABISER NN, S AT

O

M s s hag Ba i L a-h s d atd atx B

2.2 Realization of throughput guarantees

The frame-time for the network is chosen equal to T time-units, and a link-frame of
length T slots is defined on each link. Each session is guaranteed a throughput of 1 packet per
T time-units, as follows. At set-up time, a session’s path is chosen subject to the restriction
that the number of sessions sharing any link is at most T, and the session is assigned priority
of transmission in one slot in the frame on each link in its path. Link-frames are repeated on
their respective links at intervals of one frame-time. Thus, each session is guaranteed packet
transmission priority, on each link in its path, at intervals of T time-units, making feasible a

session throughput of 1 packet per T' time-units.
2.3 Upper-bounding of intra-network packet-buffering

Consider a session s that shares a link 1 with 7" — 1 other sessions. If each session gener-
ates packets in a random process, with mean packet-generation rate less than but approaching
1/T packets per time-unit, the packet-buffering requirements for session s typically approach
infinity. The storage is required along the part of the session’s path that is up-stream from
the link 1. If the link is not the first in the session’s path, this storage may be required at an
intermediate node in the path. The storage requirements for the session can be reduced at
the intermediate nodes in its path, and concentrated mainly at its source node, by using the
following extended version of end-to-end windowing, which upper-bounds the packet-buffering

for a session at all its intermediate nodes combined.

Real tokens for the session, equal in number to the session’s window-size, are created
at session set-up time, at the session’s source node. As in conventional end-to-end windowing,
these tokens are returned to the session’s source node after they reach its destination node. If
a packet belonging to the session is to be transmitted on the first link in the session’s path
in a non-priority slot, in which the session does not have pre-assigned transmission priority,
the packet is required to acquire a real token at the source node, and deposit the token at the
opposite node for the link upon reception there. While the session’s usage of non-priority slots

on the first link in its path may be blocked temporarily for a lack of real tokens, its usage of

15

O T L L g S R O Gty T AN
DN m‘fﬁ&{ﬂ '-""\' ')\x_ ey ‘{_‘lu; },h_:: T .L& DLERTR A CRTR el ‘.-L'D-.'[-,1".(&(&%&(‘(\'\.‘.".‘. RCRL SN TR CR O

AR
A

AL

AR

its priority-slots is not blocked on any link in its path, so that its throughput guarantee of one

-
»

packet per frame can be maintained. If a packet belonging to the session is transmitted on the

first link in the session’s path in a priority-slot, it is assumed to carry a fictitious token for the

4
I‘
P 3

- e -
A .l L3

,(‘:;. d
B3 a 23

session over the link, and deposit the token at the opposite node for the link. Unlike real tokens,

P S |

U]
18

fictitious tokens are removed from the network when they reach the session’s destination node.

®

i

.
Sres
2® SN

Since each packet belonging to the session carries a token for the session over the first

link in the session’s path, the number of such packets that are received at the first intermediate

o

-

-
~

node in the path equals the number of times that tokens for the session, of real or fictitious

',.:x: type, are received at that node. When a packet belonging to the session is transmitted on
.{;:‘:';i a subsequent link in the path, it is again required to carry a token for the session, real or

fictitious, over the link and deposit the token at the opposite node for the link. Thus, the

o number of the session’s packets at an intermediate node in the path, equals the number of real

t and fictitious tokens for the session at the node.

p

:" The number of real tokens present for the session, at all intermediate nodes combined,
}tﬁ is at most equal to the window-size for the session. The number of fictitious tokens is bounded
: ;1 as follows. The maximum rate at which fictitious tokens are carried over the first link in

the session’s path equals one per frame. The session does not have any guarantee that its

packets can be transmitted in non-priority slots on any link in its path. A fictitious token is

selected if possible, rather than a real token, when a packet is transmitted in a priority-slot

on a subsequent link. This ensures that the number of fictitious tokens at intermediate nodes

:: - remains upper-bounded, even in the extreme case for which the fictitious token rate on the |
“;1'5 first link is one per frame and only priority-slots, once per frame, are available on subsequent
Wi links. In the extreme case above, this rule forces the real token circulation rate to zero, and the
i, ij fictitious token rate on all links in the path equals the guaranteed packet rate of one per frame.
;«\?’ While real and fictitious tokens are thus sometimes carried in different order on different links
,';:}.'E; in the session’s path, packets for the session are always transmitted in the same order on all
, o links in the path. The token-usage algorithm for a session is summarized in Figure 2.1.
e
ys
3 16

e s o e
U LARR CR O

4 -
)
TREN »'1"-\;14 2L SRR X

Type of token as function of link and slot

Priority slot Non-priority slot
First link Fictitious Real
Subsequent link Fictitious, if any; Fictitious or Real

otherwise, Real

Number of Real tokens equals Window-size
Real tokens are returned to source from destination

Fictitious tokens are always present at source

Figure 2.1 The Token Usage Algorithm for a Session

2.4 Upper bound for packet intra-network delay

The intra-network delay, for a packet belonging to a session, is the time from the start
of packet transmission on the first link in the session’s path, to the finish of packet reception
on the last link in the path. The packet intra-network delay is equal to 1 if the number H of
links in the path is 1. Otherwise, as shown here, the delay is upper-bounded by the sum of,
first, the product wT of the session’s window-size w and the frame-time T, and, second, the

session’s schedule-delay.

The schedule-sequence, schedule-delay, and schedule-wait, for a session, are defined as
follows. Assume, for purposes of definition, that, first, the session can transmit only in priority-
slots on each link in its path, second, the session has only one packet to carry through the
network, and, third, the packet is transmitted on the first link in the priority-slot that starts
at time ¢y, 0 € 0y < T. Let o5, 2 < h £ H, denote the start-time of the priority-slot, on

the h-th link in the path, in which the packet is transmitted on that link. Since priority-slots

.............
"""""

recur on each link at intervals of the frame-time T', the packet waits less than T time-units at
each intermediate node in the session’s path,i.e.,op+1<opp1 <op+14+T,1<h< H-1.
The schedule-sequence for the session is the sequence 0,,0;,...,04. The schedule-delay for
the session is oy — 01 + 1, the intra-network delay for the packet. The schedule-wait for the
session is 0z — 0, + 1 — H, the difference between the schedule-delay and the H time-units used
for transmission of the packet. Since there are H — 1 intermediate nodes in the session’s path,
the schedule-wait is less than (H — 1)T. Hence, the schedule-delay is less than (H - 1)T + H,
and the delay-bound to be shown, (¢ — ¢y + 1) + wT, is less than (w+ H - 1)T + H.

A heuristic argument is presented below, for a session with H > 2 links in its path, to
show that the intra-network delay for any packet belonging to the session is upper-bounded

by (ou — 01 + 1) + wT. The proof is presented in Appendix A.

Worst-case scenario when w = 0 (a heuristic argument) :

Since the session has no real tokens, all packets use priority-slots when they are trans-
mitted on the first link in the path. The worst-case intra-network delay for the session arises if
the maximum possible number of packets for the session are transmitted on the first link, and
slots are available to the session on subsequent links at the minimum possible rate. Therefore,
assume that the i-th packet, 1 > 1, for the session starts transmission on the first link at time

o1+ (¢ = 1)T, and that only priority-slots are available to the session on subsequent links.

In this scenario, the first packet for the session starts transmission on the second link
in the path at time 03. Also, it follows that the i-th packet, { > 2, starts transmission on the
second link at time o3 + (f — 1)T. In general, the i-th packet, i > 1, starts transmission on the
h-th link, 1 < A < H, at time o) + (¢ — 1)T. The intra-network delay for the i-th packet, i > 1,
isfog+(i-1)T)=[o1+ ({ - 1)T] + 1, or o — 01 + 1, which is the delay-bound to be shown

for w = 0.

-r e Tl LS L ¢

Worst-case scenario when w > 0 (a heuristic argument) :

If the maximum possible number of packets for the session are transmitted on the first
link, subject to the condition that only priority-slots are available to the session on subsequent
links, then, first, the fictitious tokens for the session start transmission on the links in the
path at the same time-instants as the packets, or fictitious tokens, do in the w = 0 worst-case
scenario, and, second, the w real tokens for the session are backlogged at the second link in
the path. Thus, this scenario results in the maximum numbers, and maximal delaying, of both

fictitious and real tokens, and hence packets, in the network for the session.

In this scenario, packets for the session can use only priority-slots when they are trans-
mitted on the first link in the path. A packet that starts transmission on the first link at time
a1+ (§ — 1)T cannot start transmission on the second link at time o3 + (1 — 1)T, but must do
so after the w packets belonging to its session, that are enqueued in front of it at the second
link, are transmitted on the secox_ld link. Thus, the packet starts transmission on the second
link at time o3 + (3 — 1 + w)T, carrying a fictitious token, and starts transmission on the h-th
link, A > 3, at time o) + (— 1 + w)T, carrying the same fictitious token. The intra-network
delay for the packet is [0 + ({ = 1+ w)T| = (o1 + (= 1)T]| + 1, or (65 — 0y + 1) + wT, which

is the delay-bound to be shown.

19

I T W S

1Y

N R LT b T ¢ LT AT S S T AL A A Y T T e o, S T Ty T T s
D e A N R T A R U A) D R T R o SRR YO OO R A SR W R I

-F::: ey T paci e i bl Aa i e Ak i) -ryY
o

E'\

#1\ | Chapter 3

L Scheduling of Priority-Slots :

j{‘ ; An NP-Completeness Result and Some Algorithms

s

i 3.1 Introduction

, }:{ The schedule-based scheme, as described in Chapter 2, upper-bounds the packet intra-
.i': network delay for each session by the sum of, first, the session’s schedule-delay, and, second,
‘ the product of the session’s window-size and the frame-time. The schedule-delay for a session
'__ \\, is determined by its schedule-sequence, i.e., by the position of its priority-slot in the frame
2‘ on each link in its path. The scheduling of priority-slots, so as to result in low values of
schedule-delays, is considered from an algorithmic point of view in this chapter.

:P A schedule that has non-integer valued slot start-times can be efficiently transformed
;Sf into a schedule with only integer-valued start-times, without increasing the sum of schedule-
:‘ ‘ delays; the procedure is described in Appendix B. Accordingly, attention is restricted to the
):‘:{ construction of schedules that have integer-valued slot start-times.

5

v » First, for networks that have frame-time equal to 3 time-units, the problem of decid-
;"i.' ing whether schedules that have all schedule-waits equal to zero exist, is shown to be NP-
: n ;; complete. In the theory of computational complexity, it is conjectured that there do not exist
o any polynomial-time algorithms for solving all instances of a problem that is NP-complete
A (Garey and Johnson [12]). Hence, some special classes of networks are considered next, for
ij which linear-time algorithms are presented for computing schedules that have the minimum
',Ej:: sum of schedule-waits. Finally, a scheduling heuristic that can be applied to general networks
- A is presented together with upper bounds on the resulting sum of schedule-waits.

82

::-;: 3.2 An NP-completeness result

o

: ‘ Let S denote the set of sessions, and L the set of links, in a network that has frame-
_)j: time equal to T time-units. The paths for the sessions are known, and the number of sessions
)‘ 20

RTINS WA T LR T SN -‘_ "":-“'; Loy ."_ et PR s el
.",M‘?‘:". AL -,,.4, -l._- OIS \ -

#

25
‘h’

-
2,

sharing any link is at most T. Let H*, 1 < 8 < |S|, denote the number of links in the path for

the s-th session. The schedule for the network is the set of schedule-sequences for the sessions

Ll in S. More precisely, an integer schedule o is a mapping 03, 1 < s < [S|, 1 < h < H?, into
Bl
:§' the set of integers, that satisfies the following conditions 3.1.
b
) 0<o!<T-1,1<s<|S]| (3.1a)
.)‘-'5':::
3‘.?"4': 103 -0,_1<T,1<s<|S|,25h< H”. (3.13)
s
If the I-th link is the h-th sequential link in the s-th session’s path and also the A'-th
:~f sequential link in the s'-th session’s path,1 <! < |L|,s#s,1<s,8 <|S|,1<h<H* 1L
oo ' < H, then
e ol # ab, (modulo T). (3.1¢)
o
S
1) The sum of schedule-waits for a schedule ¢ is
A
j,'-s.".: 18|
Wo=) (o3 0 +1~ H'). (3.2)
._w‘_. o=1
‘- ~
St
The following ‘Network 3-Periodic Zero-Wait Scheduling’ decision problem is shown
v
: here to be NP-complete : for a network instance I that has frame-time T = 3 does there
‘“‘ . » . - .
oy exist an integer schedule o that has sum of schedule-waits W, = 0 ? Some corollaries of this
.'E‘i_. NP-completeness result are presented in Appendix C.
L
gy Theorem 3.1:
i\;\
*}5
3‘{\: The ‘Network 3-Periodic Zero-Wait Scheduling’ problem is NP-complete.
Y
SN
P Proof: The theorem follows from a) and b) below.
*::i;‘ a) The ‘Network 3-Periodic Zero-Wait Scheduling’ problem is in the class of problems
5
= NP. This is shown as follows.
';'f?";
b)
B 21

- ‘ ‘ [N

S . .- Ce e AT
SO PRI AN It ¥ IR,
k.L I') .ﬂ'.r e e ni: A‘-\‘\ ib‘i,t.: A ..;‘- e '.'-"'-...r\,.__l_.)}. o e s ‘-i

:f:?: i e i L A |
N

e

\'{ Assume that there exists a zero-wait integer schedule o for the network instance I.

: 2 Then, the validity of conditions 3.1 for schedule o, and of the value W, given by eqn. 3.2, can

:J-t.‘: be checked in polynomial-time. Therefore, the problem is in the class NP.

o

'-E-.;‘ b) The NP-complete ‘Graph 3-Colourability’ problem is reducible to the ‘Network 3-

- Periodic Zero-Wait Scheduling’ problem, in polynomial-time. This is shown below.

2

:3: Let V denote the set of vertices, and E the set of edges, of a graph. A 3-colouring f for

\F the graph is a mapping f,, 1 < v < |V|, into the set {0,1,2}, of ‘vertex colours’, that satisfies

L the following condition. If the e-th edge is [u,v}], i.e., incident on the u-th and v-th vertices,

'. 1<e<|E|, u#v, 1<u,v<|V|] then

b

™ Lu# fo. (3.3)

,,

~£~ Consider the ‘Graph 3-Colourability’ problem : for a graph instance G = (V, E), does there

‘N::; exist a 3-colouring f ?

h The procedure described next is used to construct a network instance I corresponding

F: to the graph instance G, with the following properties. The network has frame-time T = 3.

‘..' There is a one-to-one correspondence of sessions in the network to vertices in the graph. Each

. link in the network lies in one or two of the paths for the sessions. All links are numbered

\'g 0, 1, or 2. As shown in Fig. 3.1a, the numbers of the sequential links in each session’s path

s < constitute a modulo-3 count, with the first link numbered 0. The construction procedure is as

f:'.' follows. -

\ i) For 1 £ v < |V, repeat the following. Construct a separate first link, numbered 0,

s for the v-th session’s path.

i:::j ii) For 1 < e < |E|, repeat the following. If, in graph G, the e-th edge is incident |
..EE' on the u-th and v-th vertices, then extend the u-th and v-th sessions’ paths so as to meet |
‘:_, in a common link, as shown in Fig. 3.1b. If the old last links in the u-th and v-th sessions’ ‘
ﬁz paths are numbered z and y respectively, then w(z,y) and z(z,y) links are padded on in the
53.3 22

0 1 2 0 ! 2

t

First link in path

The numbers of the links
form a modulo-3 count

(a) The numbers of the links in a session's path

(w,2) | x=O x=1 x=2
Links padded on in the paths -
. ! y’o (lyt) ('12) (‘13)
between old last links and
newwlost link y=1 | (2,1) (1,1} (1,2)
l y=2 | (3,1) (2,1) (1,1)
u-th X w(x,y)links
sessions:
path
session's L
) link Common new last link in the paths,
path r 2(x,y)links has number that forms @ modulo-3

count with the numbers in each path
(Example shown has x=0,y=1, for
which (w,2)=(2,1), so that common
new last link is numbered

(x+w+1)modulo-3=
(y+z+1) modulo-3=0)

Old last links in the paths,
numbered xandy

(b) The extension of the u-th and v-th sessions’ paths
corresponding to edge [u.v]

Figure 3.1 The Structure of the Network I in the Proof of Theorem 3.1

sa

oot

Ak respective paths, so that the number resulting for the new common last link forms a modulo-3
N

_ count with the link-numbers in each path.

et

NSy

I:: This is a linear-time construction procedure; the constructed network I has |V'| sessions
1

.;‘: and at most |V| + 5| E| links. As shown next, a zero-wait integer schedule exists for network I
— if, and only if, a 3-colouring exists for graph G. Thus, the ‘Graph 3-Colourability’ problem is
R4

';'.: reduced to the ‘Network 3-Periodic Zero-Wait Scheduling’ problem, in polynomial-time.

Wyt '

KX)

‘ﬁ: Suppose f is a 3-colouring for G. Then, as shown below, there exists a zero-wait integer
P schedule for I. Define ¢ by 0 = fu+h~1, 1 < v < |[V|, 1 £ h < H". Then, the integers
: oy satisfy conditions 3.1a and 3.1b, and the value W, given by eqn. 3.2 is 0. Condition 3.1c
S

: is verified as follows. If a link is the h,-th and h,-th sequential link in the u-th and v-th
1o sessions’ paths respectively, then it is the common new last link resulting from the extension
RO

0o corresponding to the edge [u,v] in G. Hence, f, # f,(modulo 3), and h, = h,(modulo 3).
R
o Therefore, o), # o}, (modulo 3), and condition 3.1c is satisfied. Thus, ¢ is a zero-wait integer

schedule for I.

o

Conversely, suppose that o is a zero-wait integer schedule for I. Then, as shown below,
‘j:’":'.:‘ there exists a 3-colouring for G. Define f by f, = ¢}, 1 £ v < |V|. Then, each number f, is
.,' 0, 1, or 2. Condition 3.3 is verified as follows. If {u,v] is an edge in G, then there is a link in
:;:f: I that is the new last link resulting from the extension corresponding to edge [u,v]. Let this
S -
L0\ link be the h,-th and h,-th sequential link in the u-th and v-th sessions’ paths respectively.
o y

- Then, o), # o) (modulo 3), and h, = hy(modulo 3). Since W, =0, o} =0} + h, —1and _
sl
(-7, ok, =01 + hy — 1. Therefore, o} # o}(modulo 3), and condition 3.3 is satisfied. Thus, f is a
S
L 3-colouring for G.
AN This completes the proof of Theorem 3.1.
PR
-
- 3.3 Some scheduling algorithms

-~

2":\

R The discussion of scheduling algorithms is facilitated by the following definition of the
\

o

4 link-precedence graph for a network. There is a one-to-one correspondence between links in
7 24

Y
"
:
“\.'3. the network and vertices in the link-precedence graph. There is a directed arc a = (i,) from
"' the i-th vertex to the j-th vertex in the link-precedence graph if, and only if, at least one
§. session in the network has the corresponding links, in the order (¢, 5), as consecutive links in
: its path. The weight ws = w; ;, of arc a = (1, 5) of the link-precedence graph, is the number
tt: of sessions that have the corresponding links as consecutive links in their paths.
! If the link-precedence graph is a tree, then the following algorithm A, constructs an
: integer schedule that has sum of schedule-waits equal to 0, in linear-time. A,,., constructs
B the schedule link by link, each time scheduling all priority-slots that are to be scheduled in
:' the link-frame under consideration. Figure 3.2 shows a network for which the link-precedence
, ' graph is a tree. Figure 3.3 shows a zero-wait schedule constructed for this network using A.,...
gL
. Algorithm Aq¢,, :
":)- Step 1) Select a root vertex for the link-precedence tree. Number all |L| vertices in the
b tree, in non-decreasing order of distance in link-hops from the root. Renumber links in the
3 network so that each link-precedence graph vertex and its corresponding link have the same
‘;._ number.
" Step 2) Construct an integer schedule for all priority-slots in the frame on link number
3! 1
’
! Step 3) Perform the following |L| — 1 iterations. At iteration !, 2 <[< |L|, construct
) an integer schedule for all priority-slots in the frame on the /-th link as follows.
‘ There is an integer §, 1 < ¢ < ! — 1, such that either (¢,!) or (I,7) is an arc in the
d link-precedence graph. Suppose that (1,!) is an arc in the link-precedence graph. Then, the
J s-th link is received at the node from which the I-th link transmits. For each session that has
:: the i-th and /-th links as consecutive links in its path, schedule its priority-slot on the i-th link

]
0

80 as to start when its priority-slot finishes on the i-th link, modulo the frame-time. Suppose,

instead, that (/,1) is an arc in the link-precedence graph. Then, the /-th link is received at the

25

;.
s,

P P T I T N AT o S T [DAL RN P _." - -\ "o .‘w‘\ e T T
':""." OIURY A o.ld‘"&" o ‘.'A ’ *‘"" . OO "' > N * d\ }* <

LA

a8 o - = T TN e T Y p oo TTOT YT T W Y W e T TS IW"""“-‘T

Network:
Number of sessions 1S|=8

| Number of links |L|=6
;-;:h: | Frame-time T=3

8
e 7
. 5 \Qiib\
St 1 2 5

8 a0

SR
7
R

YyOvy

¥
o
Y —~vy

Y Y VoY

e A B
’v““f r
-
»

O k
ry o—>—o indicates that
{ !] the weight of arc

k- : (i,j) is k

a0 Figure 3.2 The Link-Precedence Graph for a Network

2N 2

T T R T L T e e T e L R S A T N T T T
DR ach e . T > { % o I A ., o, -

-

W Rek
v, 8 Aty 3y,
PAPRS LA

e e

‘ % {) X
.e?\o!"t. M E‘n e,

Frame-time T=3

Time —
Link-precedence /Network
graph vertices links
Root vertex—e 1: . 3 1.2
) | 5 ‘S 1 “ L
2 PR S5 . 7

-

7L
-4
-+
{O)

iu-

(8)]

~ O O
4‘,

@ | D |-
e

.
-+
N
Jr’4

C
!
2

.J.‘
o

.
-

Figure 3.3 A Zero-Wait Schedule Constructed Using Algorithm 4,,,,
for the Network of Figure 3.2

27

- . :

......

\\\‘

N e DT T g P e .
oo -
'(\\Ah'b:. \.‘.:md&:.m.u._-. el g e e e T B NI W

)". ETmTmTmm T R e
e

0
LWL . .

\,}: node from which the i-th link transmits. For each session that has the /-th and i-th links as
“::\'; consecutive links in its path, schedule its priority-slot on the l-th link so as to finish when its
. priority-slot starts on the i-th link, modulo the frame-time.

L

__:::‘: Suppose that some priority-slots remain to be scheduled in the frame on the {-th link.

A Since the link-precedence graph is a tree, these slots are the first of their respective sessions’
::k priority-slots to be scheduled. Schedule these remaining priority-slots so as to start at integer
hvh) .

b} ‘{' times in the frame that are as yet unassigned.
e
This completes the description of A, (.

iy

3 i‘_ﬁ The simplest non-trivial link-precedence graph that is not a tree is a directed triangle.
In this case, as shown in Appendix D, the minimum sum of schedule-waits is 0 or 1, and
= \} there is a linear-time algorithm for constructing a minimum-wait integer schedule. If the link-

‘n: precedence graph is a triangle with tree-offshoots, the following linear-time algorithm computes
(L0
:i‘fff- an integer schedule that has minimum sum of schedule-waits. First, all priority-slots that are to
- be scheduled on the links corresponding to the vertices of the triangle are scheduled using the
algorithm for a triangular link-precedence graph. Then, each of the tree-offshoots is scheduled
e
»:~';-:: using algorithm Aq,.,, with the appropriate triangle vertex already scheduled chosen as root
i vertex. The minimum sum of schedule-waits is either 0 or 1.

o
i'.: Algorithm A, can be extended so as to apply to general networks. The extended
Wikl algorithm Apeuristic, described below, is applied to each connected link-precedence graph com-
e ponent LPG.
o~
>33
Ye)

"E_r' . Algonthm Ahneuristic
.“ Step 1) Compute a maximum-weight spanning tree M ST, for LPG. This can be done

[.
-:3:: in quadratic-time by appropriately applying an algorithm, such as described by Papadimitriou ‘

" !
::-:{ and Steiglitz [27], for computing minimum-weight spanning trees in general graphs.

e |

o
L¢
‘.
J-

= 4
s

28

A A A

b b 2l S)

Step 2) Select a root vertex for M ST. Number all |L| vertices in MST in non-decreasing

ErIIETS

-
-
)

order of distance,in M ST, in link-hops from the root. Renumber links in the network so that

each link-precedence graph vertex and its corresponding link have the same number.

-y
- -&.'-'.

Step 3) Construct an integer schedule for all priority-slots in the frame on link number

1.

T
_3:: Step 4) Perform the following |L| - 1 iterations. At iteration !, 2 <! < |L|, compute
o an integer schedule for all priority-slots in the frame on the [-th link as follows.
‘_E Let A; denote the set of arcs a in LPG, that are of the form a = (1,{) (or a = (I,1)),
\ where 1 < ¢ < [- 1. Let W, denote the following function of the schedule to be computed
!. for the I-th link. If a = (1,1), then W/ is the sum, over all w, sessions that have the i-th and
*"_ [-th links as consecutive links in their paths, of the modulo-frame-time wait between the finish
of the session’s priority-slot on the i-th link and the start of its priority-slot on the I-th link.

Otherwise, a = (I,7), and W/ is the sum, over all w, sessions that have the [-th and t-th links
K N as consecutive links in their paths, of the modulo-frame-time wait between the finish of the
s N session’s priority-slot on the i-th link and the start of its priority-slot on the i-th link. Assign
:7: integer start-times in the frame on the [-th link to the priority-slots for the sessions sharing the
9 link, using an assignment algorithm that minimizes 3~ ,, W,. This can be done in cubic time
:E, by applying an optimal assignment algorithm such as described in Papadimitriou and Steiglitz
i 7).
N
‘:t.‘ This completes the description of Apcuriotic:

o
§: . The schedule-wait for a session that contributes to the weights of arcs in the link-
"»: precedence graph component LPG is the sum, over all arcs a = (1,{) in LPG such that the
X S i-th and /-th links are consecutive links in the session’s path, of the modulo-frame-time wait
J between the finish of the session’s priority-slot on the i-th link and the start of its priority-slot

on the [-th link. W;, a = (1,1), is the sum, over all w, sessions that have the i-th and I-th

links as consecutive links in their paths, of the modulo-frame-time wait between the finish of

29

.qa
M)
b
5 o o _— |
i{{ the session’s priority-slot on the i-th link and the start of its priority-slot on the [-th link.
hoY
A5V The set of all arcs in LPG is the union of the |L| — 1 sets A;, 2 <[< |L|. Hence, the sum,
F S over all sessions that contribute to the weights of arcs in LPG, of schedule-waits for sessions
4‘-..!'.
- . L
1".._!_:. 18 El='2 EccAg W;'
-
The sum of schedule-waits W,, for the integer schedule ¢ computed by Ancuriotic, i8
.
' j',_ shown below to satisfy the following upper bounds. Let T denote the frame-time for the
- * (
; ‘S. network. Then,
r -
T-1 . w;; (Tree bound);
, Wa S (1.-l)E(t,))WST A3 (.) (3.4)
Yy (5 Zipepcwis (Assignment bound).
Lo
:~ The Tree bound is obtained as follows. The modulo-frame-time wait between the
T priority-slots for a session that are on consecutive links in the session’s path, in an integer
%l
R schedule, is an integer between O and T — 1. At iteration ! in step 4 of Ajcursetsc, there is
23
e an integer 1, 1 < i < | — 1, such that either (i,!) or ({,1) is an arc in MST. Suppose that
priority-slots were scheduled at iteration ! so that W) = 0 when a = (i,1) (or a = (I,1)), as is
j ,_* done in algorithm A;,.,. Then, defining A] to be 4; ~ {(1,{)} (or A; - {({,1)}),
o3
TR Z Wa < Z wo(T - 1). (3.5)
. A, acA}
e
v{_ This inequality must also hold for the actual scheduling at iteration [, for which the value of
A
»:\':. ' Lo 4, Wa is minimum. Summing inequality 3.5 over all iterations I, 2 < | < |L|, the Tree
" bound results.
::jf.: The Assignment bound is obtained next. In Appendix E, it is shown that the priority-
I slots at iteration ! in step 4 of Axcuristic can be scheduled so that
."\- by T-1
., '
e Y wi< (—2—) > wa. (3.6)
{ \:,{‘: atA; aeA
b a This inequality must also hold for the actual scheduling at iteration {. Summing inequality 3.6
:::E. over all iterations |, 2 <! < |L|, the Assignment bound results.
U
:E::b"
Wi 30
i

PR K RIS C A L R R P o, R TIY T T AT T A R e S R UL SR L%
o 3‘*' 'f."}:"l_": o S SR N F SRR C R N S S . A N Y "-"‘ '-.’.'\.ﬂ‘“‘ Y h \

A
;i The Tree bound is zero when LPG is a tree, and o is then a schedule with zero sum
’ " of schedule-waits. More generally, a zero-wait schedule is obtained when the link-precedence
_{ graph is a forest. The Tree bound is proportional to the sum of the weights of all arcs in
LPG that are not in MST. Since MST is a maximum-weight spanning tree for LPG, the
o value of this sum is minimum among those for all spanning trees. The Assignment bound
N is equal to the expected value of the sum of schedule-waits that results from scheduling at
‘g:": random, as shown below. Suppose that the start-time of each priority-slot in each link-frame
3\ is uniformly distributed among the T integer time-instants in the frame, and is independent of
o the start-times of priority-slots in other link-frames. Then, the expected value of the modulo-
: 3\ frame-time wait, between the priority-slots for a session that are on consecutive links in the
% session’s path, is (T — 1)/2. Hence, the expected value of the resulting sum of schedule-waits
. equals the Assignment bound.
‘ Any integer schedule can be locally redefined without increasing the sum of schedule-
J waits by rescheduling a link, given the schedule on all its neighbouring links, using an optimal
assignment algorithm. Suppose that links are considered for rescheduling in turn, keeping
3:‘ the schedule unchanged if rescheduling would leave the sum of schedule-waits unchanged,
:"-'; and rescheduling otherwise. Then, each rescheduling decreases the sum of schedule-waits by
i at least one. Suppose also that this iterative procedure is continued until each link has been
_ ; considered for rescheduling at least once since the 'ast rescheduling. Then, the sum of schedule-
,I‘. waits W,. for the resulting ‘schedule ¢’ also satisfies the Assignment bound. This result is
-. obvious if the procedure above is followed starting with a schedule computed using algorithm
Aneuriotic- Otherwise, this result can be obtained by verifying the following statements. The
; proof given in Appendix E for inequality 3.6 holds when, in 3.6, the set A; is replaced by
the set A} of all arcs in LPG that are of the form (i,{) (or (I,5)). Suppose that schedule
‘: o' is used for purposes of defining W/. Then, since an optimal assignment algorithm has
:E. been used at each iteration, inequality 3.6, with A; replaced by A, holds for 1 < ! < |L|.
4 Further, Wor = (T2} 2,40 W3)/2. Hence, from 3.6, Wor < ((T-1)/2)(TiE} T wa)/2 =
' ((T = 1)/2) ZaeLpg Wa, and W, satisfies the Assignment bound.
-
o 31

e PRIV TR R N W . S T T, R
"{"., .‘-' - "".‘.‘.""-“'.‘.‘.'. . DRI TR

”i'kn,{ﬂ‘({__:_.{.ﬁ‘\.- 1-{_.. \s_'k\j'-{ L&l &.&{&L‘\.‘.. o \ Salta a-(- S e e T At A A e v sl ol p o

§ :
e
.a’x
Chapter 4
§a0
".! ,
y Mean Packet Delays for Poisson Packet Generation Model:
!
; g)’ Simulation Results for Some Networks
; ’k.:;\
;l o
. 4.1 Introduction
#%%
; In contrast with the upper bound developed in Chapter 2 for the packet intra-network
!
o0 delay, mean packet delays observed in simulations of three networks are presented in this
NG chapter. Session packets are generated in Poisson processes at known rates that are less than
:_;}:j the throughput-guarantees. For purposes of comparison, the simulations are conducted with,
" .
u.:'-i first, the schedule-based scheme, and, second, a scheme that uses conventional end-to-end
o windowing and first-come-first-served transmission of packets at links. The simulation results
A
\ are interpreted in the light of some analysis.
o0
The simulation results suggest that low mean values of packet end-to-end delays, from
3..;-) generation at source to reception at destination, are obtained in the schedule-based scheme
AR
: o even with small, but non-zero, window-sizes. Lower values of schedule-delays result in lower
AN
AN mean values of packet intra-network delays, but do not necessarily change mean packet end-
A¥, to-end delays. In contrast with the low sensitivities of mean end-to-end delays to changes
o . e
_:bg in window-sizes for the schedule-based scheme, these sensitivities for conventional end-to-end
['h': windowing, with first-come first-served transmission of packets at links, are observed to be
: relatively large.
'}‘f; . The simulator, SB, for the schedule-based scheme implements the network model of
Section 2.1 and the token usage algorithm of Figure 2.1, with the following additional assump-
w:‘ tions.
f-g,-_)
ha o .
5 a) Packets are generated for each session in an independent Poisson process.
bl
i b) All links have integer-valued slot start-times.

e

3{\;: c) The time taken by a session’s real tokens (or, window-tokens), to return to the
' session’s source node after reaching its destination node, is a constant number of slots equal
2.‘ to the number of links in the session’s path.

R .

:g d) When a packet belonging to a session is transmitted in a non-priority slot on a

subsequent link in the session’s path, a real token is selected if possible, rather than a fictitious

token, to be carried by the packet over the link.

A% e) A cyclic order for the sessions sharing a link is defined for each link. When a slot
-' starts on a link it is first determined whether the slot is a non-priority slot, i.e., whether i) no

;: session has pre-assigned transmission priority in the slot, or ii) the session that has pre-assigned

‘::: transmission priority in the slot has no packet to transmit. Then, if the slot is a non-priority
3 slot, the cyclic order is used to search for a session that has both a packet to transmit and a

* g token for the packet to carry over the link. The search is started beginning with the session
,»r in the cyclic order that follows the session for which a packet was transmitted in the previous
. non-priority slot.

18

: The simulator, FCFS, for the scheme that uses conventional end-to-end windowing
7-' : and first-come first-served transmission of packets at links, implements the network model of
i Section 2.1, with the additional assumptions a),b),c) above, and f),g) below.

3

E‘f f) Window-tokens for a session, equal in number to the session’s window-size, are
»' created at session set-up time, at the session’s source node. A packet belonging to the session

:-;'_': . is required to acquire a window-token at the source node in order to be enqueued in the first-
"’ come first-served queue of packets at the first link in the session’s path, and deposit the token
:-".‘ at the session’s destination node upon reception there. Packets generated at the source node

wait there in a first-come first-served queue before joining the queue at the first link when

“}E tokens become available.

3%

P g) At the ends of slots, packets are enqueued in the first-come first-served queues of

. packets at links as follows. First, a packet just received over a link incoming to a node is
f I

b 33

!

Hres e R IR R SRR AT

, B L L say -2l . b - ke - i Ll SAN - —.v"\"t“"‘—
o)
"
L)
2R
gy
‘ \1: enqueued at the next link, if any, in its path. The incoming links are considered here in
R ’ ascending order of the identity numbers of the links. Next, a window-token just returned to
"‘ a session’s source node is used to enqueue a packet, if any, waiting to be enqueued at the
e,
:'1 first link in its path. The session window-tokens are considered here in ascending order of the
! []
':‘; b identity numbers of the sessions.
,;_‘;,, FORTRAN programs for simulators SB and FCFS are listed in Appendix G. In the
Y
:&: following sections, simulation results are presented for three networks. The packet genera-
’ tion rate and the window-size for the s-th session in a network are denoted by A, and w’,
\ :\'4 respectively.
T
N
" > 4.2 Network 1
' 'Ef Network 1 is shown in Figure 4.1. The window-sizes for all sessions are assumed equal
J_'Lu
o to infinity.
) -l
. i
- From the analysis in Appendix F of a slotted link with Poisson packet arrivals, it follows
_, that the expected packet waiting-time at link 1 for sessions 1 and 2 combined is 1/[2(1 - A; —
A -1
ﬂ}'z A3)], for both simulators SB and FCFS. With A; = A3 = 0.49, this value is 25.
\,: Suppose that Ay = A3 = 0.5+ ¢ > 0.5, and A3 < 0.5. Since A; + A3 = 2A; = 24, > 1,
::::::; packets for sessions 1 and 2 are always available for transmission on link 1. Thus, in simulator
-' : SB, packets for session 1 arrive at link 2 at the starts of slots for session 1 on link 2; the packet
oxs arrivals constitute a deterministic process with rate 0.5. In simulator FCFS, since packets
1
S0 for sessions 1 and 2 arrive at link 1 in Poisson processes with equal rates, the packets in
S
~ distinct positions in the queue at link 1 belong to session 1 with probability 0.5, independent
LN
s of one another. Hence, in simulator FCFS, packets for session 1 arrive at link 2 at the starts
¢
| 4‘.3 of slots on link 2 in a Bernoulli process with rate 0.5. From the analysis in Appendix F of
Wy
L)
’:: ¢ a slotted link with Poisson arrivals combined with, first, deterministic arrivals, and, second,
Bernoulli arrivals, the expected packet waiting-time at link 2 for sessions 1 and 3 combined is
N 2X3/(1 -4 A3 ?) for simulator SB, and 3A3/(1 — 4 A3 3) for simulator FCFS. The waiting-time
s :.
) A
o “

. T L e TR LT e
L e T Y
AV _.ﬁ.m.ﬁ\ﬂ'.:r.j'.ﬁ 15{$

TR TEFCWwYTEYY 'Y\‘-.1':—1-n'ﬂ"‘"-—-""‘-“-\qvwiwn'u'-;-'w

-
o Network:
1:-"4
* 4
{ —- >
X (@ e = QO QO
1'::- ! 2
i~ 2 ———> 3 >

i Window-size wS= ,5=1,2,3
~ Zero-wait schedule for simulator SB:

Link Time — Frame-time T=2
“'_ {: | |2

k)

- Figure 4.1 Network 1

"-l'rfr‘
4

VM

e

35

'; }:'} ’

-
.t et

e o~ a = e e, .. e P - At et v e e
CAPE N e . g . ' - . (Lo S - . P
» AR I N - L B AR et T NS

L S LI F A N R > .
s % IS YOS SO S R P S K S R AR AR . IR j
K A Tt Sl R e T o TP et e e e O AT S P S} O R L PO)
o {41 MMERERTATA YL TSRV Yy \3““- N CRVRRR L VR TS TR TG AT SR T IR Y. & VS5 CI ¥ S0 W S T Y T ¥ O WS- . O

-
[
L3

i

52

o

\w for simulator SB is smaller because the arrival of packets for session 1 at link 2 is more regular.
! o With A = 0.25, this value is 2/3 for simulator SB and 1 for simulator FCFS. The value with
Az = 0.49 is 24.75 for simulator SB and 37.12 for simulator FCFS. With link 1 loaded very
LE heavily and link 2 loaded less heavily, using A; = A3 = 0.499 and A3 = 0.25 for example, the
"H\ results above provide approximate values for the expected waiting-time at link 2 for sessions 1
Sl and 3 combined. Such estimates are not as accurate when the links are loaded equally heavily
_‘:: using A; = A; = A3 = 0.49, since the unused capacity 1 — (A1 + As) on link 2 is then 0.02, as
2 opposed to 0.01 when A; = Ay = 0.5 and Ag = 0.49.

: Simulation results are now presented.

.f a) Simulations with A; = A = 0.499 and A3 = 0.25.

. ' Mean packet waiting-times for sessions at link 2

| "-h as function of simulator
% Session 1 Session 3 1 and 3

8 SB 0.027 1.985 0.681

'_ % FCFS 0.872 1.247 0.997
3 “-x

&_ The mean packet waiting-times for sessions 1 and 3 combined at link 2 agree with the corre-
P sponding analytical results.
2
('j b) Simulations with A; = A3 = A3 = A.

b Mean packet waiting-times in simulator SB

-,: at links, and overall, as function of A

: Link 1 Link 2 Overall

T A=049 2514 19.12 29.51

.E A=0.48 12.43 9.48 14.60
"}; A =0.46 6.20 4.70 7.27
7 A=0.42 3.12 2.32 3.62

% 36

:‘{i

»
I &

. ,*‘.‘_. : '
ot als i

) A.:‘l LAt
AT .{’.'_ S !.r

Mean packet waiting-times in simulator FCFS

at links, and overall, as function of A

Link 1 Link 2~ Overall
A =049 26.08 21.17 31.49
A =0.48 12.46 10.48 15.29
A =0.46 6.20 5.09 7.52
A =042 3.12 2.45 N

The data show that, with A = 0.49, the mean packet waiting-times at link 2 in the simulators
are lower than the respective approximate analytical estimates. The overall mean packet
waiting-time for simulator FCFS is 6.5% higher than for simulator SB. Further, when A is
reduced to 0.42, this difference reduces to 2.5%. The simulation results indicate that, with
infinite window-sizes, the overall mean packet waiting-time is less for simulator SB than for
simulator FCFS. However, the difference is small except when links are loaded very close to

their capacities.
4.3 Network 2

Network 2 is shown in Figure 4.2. Simulator SB can guarantee throughput up to 0.5 to
each of the two sessions, irrespective of the session’s window-size. A schedule with frame-time
eqﬁal to 2 may be used for this purpose, with 1 slot per frame allotted to each session on each
link in its path. Simulator FCFS cannot support a combined throughput of 1 when, for each
session, the window-size equals the number of links in the session’s path. This is first shown

heuristically, and then demonstrated by simulations.

The round-trip time for a session’s window-token is the time elapsed after the token is
acquired by a packet at the session’s source node until the token next returns to the source
node. The maximum throughput possible with a single window-token is the reciprocal of its
minimum round-trip time. For session 1, since the window-size is 3 and the round-trip time

for a window-token is at least 6, the ratio of the window-size to the minimum round-trip time

37

A
.

‘Il-l
AP
- .‘ J-,

% {

— e
v
)
i
'

o P
.

ML

70
I

LRy
o e

-
. »
LY

. 2
e
:}'_ . Oy G Pl D S Q
*..‘.‘-t l 3 5
N 1 > > >—
\..':~ -
oWy

e | ,
N M Figure 4.2 Network 2

L.

g.:{ o 38

RSN T R RO A C
o. et PPN

ROy
. .l‘t.) ")

o

L cmn B e aw . a PR vy 4w B4 T b i M e Ly e gy -~ w5 - LMWL e e e e W » -'7“"-'“‘-‘“-?"‘-“1
-
)

,.‘.«l‘
N
b
b3 . . .
o is 0.5. Hence, the throughput for session 1 is at most 0.5. Similarly, the throughput for session
e 1
. 2 is at most 0.5. i
*I;:f: Suppose that the combined throughput for sessions 1 and 2 equals 1. Then, every
Sy
}; slot on link 1 must be used. A packet (numbered 1) belonging to session 1 must ‘sometimes’
A,' be transmitted on link 1 immediately after a packet (numbered 2) belonging to session 2 is
A £ :; transmitted on the link. Then, packets 1 and 2 are transmitted concurrently on links 3 and
-'\': 4, respectively. Since link 3 has a lower identity number than link 4, packet 1 is transmitted
before packet 2 on link 5, and packet 2 must wait 1 time-unit at link 5. Hence, the round-
f;:j_‘: trip time for a window-token for session 2 must ‘sometimes’ exceed 8, and the throughput for
5
j *‘3 session 2 must be less than 0.5. If links 3 and 4 had their identity numbers interchanged. then
o
g packet 2 would have been transmitted before packet 1 on link 5, and the throughput for session
" 'j 1 would have been less than 0.5. Thus, the combined throughput must be less than 1, and the
:L:.‘_ supposition above is contradicted.
3
‘ Simulation results are now presented for simulator FCFS, with window-sizes w* = 3
oy and w? = 4 as above and A; = A = A,
! *‘
t‘ : Mean window-token round-trip time for sessions
" as function of A
HC (and corresponding ratio of
._ window-size to mean round-irip time)
. Session 1 Session 2
':j A =0.42 6.30 (0.476) 9.48 (0.422) -
o A=0.43 8.26 (0.479) 9.53 (0.420)
.‘-'.“
b
"I.
o
>
0y
% 30

!
.
-
-
.
.
-

N
A
l.l

Wr—— L Ge St G e h i an A et i \ - A A aand i e ad bl aiet -a bk - o= ahdion et o

Mean packet end-to-end delays for sessions
from generation at source to reception at destination

as function of A

Session 1 Session 2
A =0.42 8.84 251
A =0.43 9.55 oo*

(* the throughput for session 2 is 0.42)

The data show that the mean window-token round-trip time for session 2 is significantly larger
than the minimum value 8, and that the ratio of the window-size to the mean round-trip time
is correspondingly less than 0.5. The simulation results indicate that simulator FCFS may not
be able to support session rates approaching the throughput-guarantees of simulator SB, even
if the window-size for each session is large enough to support the session’s rate in the absence

of other sessions.
4.4 Network 3

Network 3 is shown in Figure 4.3. Mean packet end-to-end, pre-transmission, and

intra-network waiting-times for sessions are measured in the simulations for this network.

The end-to-end waiting-time, for a packet belonging to a session that has H links in its
path, is the difference between the end-to-end delay from generation at source to reception at
destination, and the H time-units used for transmission of the packet. The pre-transmission
waiting-time for the packet is the time from its generation to the start of its transmission
on the first link in the path. The intra-network waiting-time for the packet is the difference

between its end-to-end waiting-time and its pre-transmission waiting-time.

In simulator SB, if a session has window-size equal to zero, then it can transmit at
most its throughput-guarantee of 1 packet per frame-time T on the first link in its path. The

expected number of packets generated by the session in one frame-time is T'A. From the analysis

40

Network:
{ ————— 5 > >
2 -~ - 6 - -~ -~

9

by
(8)

. Ame
YN
yWly

H
Y
Y

A=A =0'24,i=1,....6

Schedules for simulator S8: .
Frame-time T=4

Zero-wait schedule: Maximum -wait schedule:
Time — Time —=
Links : Links

L 1.2.3 123
2 _ 4 23 2 __,23 4
3 _,3.45 6, 3 563 4
4 _ 6, .45 4 _5.6 4,
5, 6, . 5, L6 .

Figure 4.3 Network 3

41

> IO N P I P B PR T R R S e LT S RS AL RN T & ~ 1.
R S N O R R TR N A R A U TR IR B chea e o st MR

PR
- FO L
e "o 80 e)
- et
N QR

-
.

in Appendix F for a slotted link with Poisson arrivals, it follows that the expected packet pre-

transmission waiting-time for the session is 7/[2(1—-TA)], i.e., 50. When the zero-wait schedule
is used, since the session has window-size equal to zero, the packet intra-network waiting-time

for the session is zero and hence the expected packet end-to-end waiting-time also equals 50.

Appendix F for a slotted link with Poisson arrivals also provides the following approximation
to the expected packet end-to-end waiting-time for a session. The approximation reduces the
network to a single slotted link with Poisson packet arrivals at rate p, where p denotes the
maximum, over all links in the session’s path, of the sum of the packet generation rates for
all sessions sharing a link. The expected packet end-to-end waiting-time for the session is
approximately 1/{2(1 — p)]. The value of p is 0.72 for sessions 1 and 2 (the network is reduced
to link 1 for these two sessions), and 0.96 for sessions 3,4,5, and 6 (the network is reduced to
link 3 for these four sessions). Correspondingly, the expected packet end-to-end waiting-time
is approximately 1.79 for sessions 1 and 2, and approximately 12.5 for sessions 3,4,5, and 6. It
can also be verified that the end-to-end waiting-time for session 1 is 1.79, that for session 2 is

greater than 1.79, and those for sessions 3,4,5, and 6 average to more than 12.5.

million time-units.

size (1 or o) for all sessions.

The Jata for window-sizes equal to infinity are close in value to their respective analytical

approximations. The value of the mean packet end-to-end waiting-time for a session when all

In both simulators SB and FCFS, when all window-sizes are infinite, the analysis in

Simulation results are now presented. In each case, the network is simulated for one

a) Simulations using simulator SB, with the zero-wait schedule and with equal window-

Session 1 Session 2 Session 3 Session 4 Session 5 Session 6

2.14
1.79

Mean packet end-to-end waiting-times for sessions

as function of window-size w

3.22 15.00 15.58 15.01 14.60
2.33 12.71 13.29 12.96 12.53

42

o dal LB i e A el g

window-sizes are 1 is much closer to the corresponding value when all window-sizes are oo than
to the value 50, that results when the session’s window-size is 0. This suggests that low values
of mean packet end-to-end delays are obtained for simulator SB even with small, but non-zero,

window-sizes.
b) Simulations with window-sizes for sessions scaled in proportion to their path lengths.

Let k, £ = 1,2,3,4,00, denote the window-size scale-factor, i.e., w! = k, w? =

2k, w3 = 3k, w* =3k, w® =2k and w® = 3k.

i) First, mean packet end-to-end waiting-times are presented, for simulator SB with

both the zero-wait and the maximum-wait schedules, and for simulator FCFS.

Mean packet end-to-end waiting-times for sessions
as function of k
in simulator SB with the zero-wait schedule

Session 1 Session 2 Session 3 Session 4 Session 5 Session 6

k=1 2.03 2.52 12.85 13.41 13.11 12.65
k=2 1.82 2.38 12.72 13.29 12.96 12.53
k=3 1.81 2.35 12.71 13.29 12.96 12.53
k=4 1.80 2.34 12.71 13.29 12.96 12.53
k= oo 1.79 2.33 12.71 13.29 12.96 12.53 |
43
.‘ P PR PR L AT R I PRI S ."\.) oL
o e L L e e e e S et e e S

Mean packet end-to-end waiting-times for sessions

as function of &k
in simulator SB with the maximum-wait schedule

Session 1 Session 2 Session 3 Session 4 Session 5 Session 6

k=1 2.03 2.48 13.39 13.33 12.73 12.30
k=2 1.82 2.40 13.24 13.32 12.63 12.26
k=3 1.81 2.39 13.22 13.35 12.62 12.26
k=4 1.80 2.39 13.22 13.36 12.61 12.26
k=oo 1.79 2.39 13.22 13.37 12.61 12.25
Mean packet end-to-end waiting-times for sessions
in simulator FCFS as function of k
Session 1 Session 2 Session3 Session4 Session 5 Session 6
k=1 2.74 2.83 11.70 10.39 25.32 9.03
k=2 1.88 2.35 11.58 10.05 20.82 8.80
k=3 1.80 2.56 12.75 11.16 17.50 9.98
k=4 1.78 2.64 13.50 11.90 15.25 10.77
k=o0 1.78 2.70 14.61 13.02 11.91 11.91

The preceding data suggest that the dependence of mean packet end-to-end waiting-
times on the positive integer window-size scale-factor is much weaker in simulator SB than in

simulator FCFS. Further, for simulator SB, the difference between a session’s mean packet end-

&'
L §

to-end waiting-times with the zero-wait and the maximum-wait schedules is small. In simulator

wal

Y
"r*r:-
{.x.l [

Cx

FCFS, the differences between the values of the data for sessions 5 and 6 are suggestive of high

AN

sensitivity to choice of window-size, as discussed further in part c).

----------------- S N L I S T i AL
;- . “w '\““-:r ‘e e '!:,.i\-. :. LK) '("'_‘~ “\. ‘< f{_' .
U, PRV IS PR PG O, FLEREREACRT R TR CO A NS

- '!“\1
RN

W 7
Jat]

s

} i) Next, mean packet intra-network and pre-transmission waiting-times are presented,

'; for simulator SB with both the zero-wait and the maximum-wait schedules, and for simulator

R FCFS.

-

P

15 Mean packet intra-network waiting-times for sessions

.;: as function of k

\f in simulator SB with the zero-wait schedule

'. . Session 2 Session 3 Session 4 1,5,and 6

i k=1 0.52 5.45 5.33 0

‘i k=2 0.58 8.04 7.96 0

i k=3 0.58 9.30 9.32 0

S k=4 0.58 9.96 10.08 0

": k=oo 0.57 10.93 11.41 0

%

g

oo | o |

"I\ Mean packet intra-network waiting-times for sessions |
: as function of k |

*,’ in simulator SB with the maximum-wait schedule

:\." Session 2 Session 3 Session 4 1,5,and 6

¢ k=1 0.54 7.05 6.36 0

Y k=2 0.61 9.08 8.66 0

J k=3 0.62 10.08 9.86 0

3 k=4 0.62 10.62 10.55 0

55 k=oo 0.63 11.44 11.74 0

[

o
PO

> o A A
8

noonou
[w [—

E B A

Mean packet intra-network waiting-times for sessions
in simulator FCFS as function of k

Session 2 Session 3 Session 4 1,5,and 6

k=1 0.33 3.19 2.90 0
k=2 0.71 7.86 7.11 0
k=3 0.85 10.25 9.31 0
k=4 0.89 11.45 10.44 0
k=oco 0.92 12.84 11.78 0

Mean packet pre-transmission waiting-times for sessions
as function of k

in simulator SB with the zero-wait schedule

Session 1 Session 2 Session3 Session4 Session 5
2.03 2.00 7.40 8.08 13.11
1.82 1.79 4.68 5.33 12.96
1.81 1.77 3.41 3.97 12.96
1.80 1.76 2.76 3.21 12.96
1.79 1.76 1.78 1.88 12.96

Mean packet pre-transmission waiting-times for sessions
as function of k

in simulator SB with the maximum-wait schedule

Session 1 Session 2 Session 3 Session4 Session 5
2.03 1.94 6.34 6.98 12.73
1.82 1.79 4.17 4.66 12.63
1.81 1.77 3.15 3.49 12.62
1.80 1.76 2.60 2.81 12.61
1.79 1.76 1.78 1.63 12.61

46

R L S TR
MO JEC A

RN
DY)
AT S

Session 6

12.65
12.53
12.53
12.53
12.53

Session 6
12.30
12.26
12.26
12.25
12.25

DS~

..
A " a

Mean packet pre-transmission waiting-times for sessions
in simulator FCFS as function of k

Session 1 Session 2 Session 3 Session 4 Session 5 Session 6

k=1 2.74 2.50 8.51 7.48 25.32 9.03
k=2 1.86 1.64 3.72 2.93 20.82 8.80
k=3 1.80 1.71 2.49 1.85 17.50 9.98
k=4 1.78 1.75 2.05 1.47 15.25 10.77
k=oo 1.78 1.78 1.78 1.24 11.91 11.91

The data show that the maximum-wait schedule indeed has the higher mean packet intra-
network waiting-times. However, it also has the lower mean packet pre-transmission waiting-
times, and its mean packet end-to-end waiting-times are essentially the same as a result. The
mean packet intra-network waiting-times for sessions 2,3, and 4 when k = 1, i.e., when the
window-size for each session equals the number of links in the session’s path, are larger in
simulator SB than in simulator FCFS. This may be explained as follows. For the same set
of window-sizes, the number of window-tokens in simulator FCFS equals the number of real
tokens in simulator SB. Since simulator SB has fictitious tokens in addition to real tokens, it is
possible for a larger number of packets to be present inside the network in simulator SB than

in simulator FCFS. The data indicate that this is indeed so for &k = 1.

In simulator SB, a plausible explanation for the lower mean packet pre-transmission
waiting-times for the maximum-wait schedule is as follows. With the maximum-wait schedule,
at subsequent links in a session’s path, packets belonging to the session have to wait longer for
priority-slots, and hence have greater opportunity for using non-priority slots and carrying real
tokens. This decreases the waiting-time for real tokens at the subsequent links, and increases
the availability of real tokens at the first link. Hence, the session can use more non-priority
slots on the first link, and its mean packet pre-transmission waiting-time is reduced. Further,

since the session uses fewer priority-siots on a subsequent link, it creates more non-priority

47

slots on the link, and reduces the mean packet pre-transmission waiting-time for a session that

has the link as its first link.
c)-Simulations with separate increases in window-sizes for sessions.

The starting window-sizes are set at w! = k, w? = 2k, w® = 3k, w* = 3k, w® =
2k, w® = 3k, with the common window-size scale-factor k equal to 1 or 2. The window-size
w? for session 2 and, separately, the window-size w* for session 4, are increased by the number

of links in the respective session’s path.

i) First, mean packet end-to-end, intra-network, and pre-transmission waiting-times
are presented for simulator SB with both the zero-wait and the maximum-wait schedules, for

k=1,ie., (v, v ws w)=(1,3,2,3).

Mean packet end-to-end waiting-times for sessions
as function of (w?, w*)
in simulator SB with the zero-wait schedule

Session 1 Session 2 Session 3 Session 4 Session 5 Session 6

(2,3) 2.03 2.52 12.85 13.41 13.11 12.65
(4,3) 2.01 2.46 12.85 13.40 13.11 12.65
(2,6) 2.03 2.51 12.84 13.35 13.09 12.64

Mean packet end-to-end waiting-times for sessions
as function of (w?,w*)
in simulator SB with the maximum-wait schedule

Session 1 Session 2 Session 3 Session 4 Session 5 Session 6

(2,3) 2.03 2.48 13.39 13.33 12.73 12.30

(4,3) 2.02 2.44 13.39 13.33 12.73 12.31

(2,6) 2.03 2.49 13.38 13.31 12.72 12.30
48

5555

PO, 3 | S

oo

3

AR X3 P WY
'0' 4
A
t
N

Ly —.

¥
\’
L

P 2 ol

Y
vors

Mean packet intra-network waiting-times for sessions
as function of (w?,w?*)
in simulator SB with the zero-wait schedule

Session 2 Session 3 Session 4 1,5,and 6

(2,3) 0.52 5.45 5.33 0
(4,3) 0.61 5.46 5.33 0
(2,6) 0.50 5.45 7.97 0

Mean packet intra-network waiting-times for sessions
as function of (w?, w*)
in simulator SB with the maximum-wait schedule

Session 2 Session 3 Session 4 1,5,and 6

(2,3) 0.54 7.05 6.36 0
(4,3) 0.59 7.05 6.36 0
(2,8) 0.55 7.04 8.67 0

Mean packet pre-transmission waiting-times for sessions
as function of (w?, w*)
in simulator SB with the zero-wait schedule

Session 1 Session 2 Session 3 Session 4 Session 5 Session 6

(2,3) 2.03 2.00 7.40 8.08 13.11 12.65

(4,3) 2.01 1.85 7.39 8.07 13.11 12.65

(2,8) 2.03 2.01 7.40 5.38 13.09 12.64
49

. e e . T T T AT,

DRI . NN P e A TR e S T A W\ \\
LI LN . . R (vt Y . - - \ .

ANV IYIY I e Ry ““ PR }.\"i',"'}'..(‘;\“b.h aN ‘;AJDL\"“Mf—h\\-X“’h\l.—':L sk

-

(2,3)
(4,3)
(2,6)

for k=

(2,3)
(4,3)
(2,6)

(4,6)
(6.6)
(4,9)

‘n .

_LJ&"C;

Ui el Al et Saay all At L sk id Cal YT

Mean packet pre-transmission waiting-times for sessions

wt)

in simulator SB with the maximum-wait schedule

as function of (w?,

Session 1 Session 2 Session3 Session 4 Session 5
2.03 1.94 6.34 6.98 12.73
2.02 1.85 6.34 6.97 12.73
2.03 1.93 6.34 4.65 12.72

1 and then for k = 2.

Mean packet end-to-end waiting-times for sessions

as function of (w?,w*)

in simulator FCFS for (w!, w3, w®, w®) = (1,3,2,3)
Session 1 Session 2 Session 3 Session4 Session 5
2.74 2.83 11.70 10.39 25.32
3.35 1.69 12.54 10.53 24.99
2.68 3.41 15.79 4.38 25.92

Mean packet end-to-end waiting-times for sessions
u)

in simulator FCFS for (w!,w®, w®,w®) = (2,6,4,6)

as function of (w

Session 1 Session 2 Session 3 Session 4 Session 5
1.86 2.35 11.58 10.05 20.82
1.90 2.28 11.64 10.05 20.81
1.85 2.47 12.23 8.53 21.46

50

e DN

T T Y SIEWZT 0N ST TR YU U LN Y T T Y

Session 6
12.30
12.31
12.30

ii) Next, mean packet end-to-end waiting-times are presented for simulator FCFS, first

Session 6
9.03

8.90
10.08

Session 6
8.80
8.80
9.03

"“'*"'.""_"-‘ T LS
RSSO |
MAM AAAJAAMM MAAAJAA_&J-

LR
AL T "

T e vy

As in the simulations with window-sizes for all sessions increased simulataneously in propor-
tion to their path-lengths, the data suggest that the sensitivity of a session’s mean packet
end-to-end waiting-time to an increase in its window-size is much smaller in magnitude in

simulator SB than in simulator FCFS. Further, in simulator SB, the sensitivities of a session’s

mean packet end-to-end, intra-network, and pre-transmission waiting-times to an increase in a

{fg second session’s window-size are much smaller in magnitude than the second session’s respec-
’ 3 . 3 L . - . 3 . -

T tive sensitivities to the same increase. For mean packet end-to-end waiting-times in simulator
IO

FCFS, the two sets of sensitivities are often comparable in magnitude. This suggests that

proper choice of window-sizes in simulator FCFS is more difficult than in simulator SB.

Piiroe, e
s - 8
AT P

SRy 5K

STl ettty

Yo et A

Chapter 5

Conclusion

An approach has been described for achieving packet throughput guarantees and packet
intra-network delay limits for sessions in a network, while permitting flexible usage of link
transmission capacities by the sessions. Sessions have packet throughput values up to which
throughputs are guaranteed. Packet generation for sessions at rates above these values can-
not always be supported, but, depending upon the level of inactivity of other sessions, may

sometimes be carried with proper choice of window-sizes.

The schedule-based scheme in which session throughput guarantees equal to 1 packet
per frame-time T are realized, has been explained in Chapter 2. The network model of Section
2.1is used. The session’s packet intra-network delay is upper-bounded by the sum of, first, the
session’s schedule-delay and, second, the product wT of the session’s window-size w and the
frame-time T. A similar upper bound can be obtained for the case of non-zero, but known and
fixed, link propagation or nodal switching times, and also for the case of different slot durations
that are required for links with different bit-speeds. The frame-time used on all links is the

same, in either case.

A throughput value equal to n/T, where n is an integer at most equal to T, can be
guaranteed to a ses§ion by assigning n priority-slots to the session in the frame on each link in
the session’s path. An improved delay-bound, equal to the sum of a suitably-defined schedule-
delay with [w/n]T, would then appear to hold.

The network model of Section 2.1 conveys flow-control information to a session’s source
from its destination using end-to-end windowing. Node-by-node windowing can also be used
for this purpose, as follows. Fictitious tokens for the session are defined as in Section 2.3, but
real tokens for the session are associated with the nodes in the session’s path. The token usage

algorithm of Figure 2.1 can be used, with the understanding that a real token carried by a

52

I o I A R Ry R NN cp e -
-P'-:\'..*'-"H" -“\.'{ ,.‘_n'*‘q A LN “ AN

B P P I
et A N
g

B A S SRS AL e R L B A

o

v}

.

}}f packet over a link is associated with the node that receives the link. A real token associated

- with a node j in the session’s path, is returned by node j to the node i preceding it in the path,

‘\r when a packet belonging to the session is transmitted from node j to the node k following it

‘;\, in the path, using a real token associated with node k.

s

“ An alternative version of node-by-node windowing associates fictitious as well as real

; S tokens with nodes in the session’s path. A token carried by a packet over a link is associated

s- with the node that receives the link. Fictitious tokens are used in priority-slots on the link, and

) real tokens in non-priority slots. If a fictitious token associated with a node j in the session’s

:E:j path is present at node j when a packet belonging to the session is transmitted from node
s j in a priority-slot, then the fictitious token is discarded at node j. Otherwise, a real token
,\ \ associated with node j is returned by node j to the node i preceding it in the path. When a

{ packet belonging to the session is transmitted from node j in a non-priority slot, either a real
,}* token associated with node j is returned to the node i preceding it in the path, or a fictitious
! token associated with node j and present there is discarded there.

Algorithms for scheduling priority-slots so as to obtain low values of session schedule-
- delays have been presented in Chapter 3, following an NP-completeness proof showing that the
, minimum-delay scheduling problem is algorithmically hard for general networks. The network

: model of Section 2.1 is used, along with the assumption that the paths for all sessions in the

: network are known.

Algorithm A, constructs a schedule with sum of schedule-waits equal to zero, for
networks with tree link-precedence graphs. For such networks, this algorithm can be extended

: so as to produce schedules that have waits between consecutive slots equal to known and fixed

_ link propagation or nodal switching times.

% Algorithm Ap,yristic 18 a scheduling heuristic that can be used for any network that

Y conforms to the model assumed. This algorithm reduces to A, for tree link-precedence
:.q graphs. An analysis of its worst-case performance has been presented, but its performance
\1\ for specific networks may need to be investigated further. Ax,urietsc can be extended to the
53

.
- - . - - . - - - « . - . - - . i - . -~ ‘- . . .
e T T e TN T T e e e e T e e e BRI T T R T ey SUE I L TS RN
.-'.-:’.:- -ﬂ.\’..-.. “ PR - Yo LR] RN K S, P - _~' ol ,_"\ R ". W N e, W e e e et e e .'._—‘,'y-f'-‘ A xh-_“‘_‘ .“.-‘_
W + » o .

.b'i:._ e i e ek b e TERT VW TS DSV e (A sl aalh ealh vat vol aol sofir Sa A it A i o el b i i Jhidh antl it e kil sl ahd
f L
S~
o \’,".
. .1:
)
”'1*3
ﬁ";:«. 3 non-zero link propagation or nodal switching time case, and also to the case of different slot
Y
; e durations on different links. Worst-case analysis for these extensions is likely to be complicated.
48 ,
A L}_:;‘ The schedule may require improvement during the course of operation of the network,
AR)
\;\ as new sessions are set up and old ones disconnected. In order to reduce the time and com-
AVAN
munication required, the schedule may be computed using a distributed algorithm, where
L)
“{.:.g the computation and communication involving a link-precedence graph vertex are the joint
i o .. .
"3;::"4 responsibility of the transmitting and receiving nodes for the corresponding link.
e A distributed implementation of algorithm Ajpcyrigeic is possible. The distributed algo-
'.‘:\}C.:;' rithm described by Gallager, Humblet, and Spira [11] would be used to compute a maximum-
O)
RS weight spanning tree and corresponding root vertex for each link-precedence graph component.
,:.; Then, links would be scheduled using communication outwards along the link-precedence trees
\: starting from the roots.
-
?.:—-'_'.
WX In order to improve the schedule, links may be rescheduled using an optimal assignment
oo algorithm, holding fixed the priority-slot assignments on neighbouring links. The distribution
¥
‘P
‘:‘-’:' of rescheduling opportunities among links can be done in the manner of the solution described
AL! | : - - :
.-.’ ' by Chandy and Misra [6] for the distributed dining philosophers problem.
3
/ ::: Packet intra-network delay limits may be violated if links are rescheduled while packets
’;:::-2 are in transit in the network, or if link speeds drift, and also if links are unreliable and packets
2 have to be retransmitted. For example, the rate at which fictitious tokens for a session are
}3’ carried over the first link in a session’s path may not be matched by the fictitious token rate on
Y
".;E subsequent links if these links are unreliable. In such a case, both real and fictitious tokens are
o

<

backlogged at these links. The fictitious token backlog can be viewed as an effective increase

::.i-. in the real token window-size, and raises the packet intra-network delay. i
i |
~ ’\: ‘
:-:'.[When packets belonging to a session incur excessive intra-network delay, the session’s

AN

T source node may reduce the session’s window-size by holding back real tokens. The window-size

Ahid

e

f‘-’

v

Y 54

S

%

N

i

\fij may be increased when the delay decreases. The source node may also relieve excess intra-

‘:Ju network delay for the session by temporarily blocking transmission of the session’s packets on

‘- ; the first link in the session’s path. Packet intra-network delay measurements for the session

ﬁ' would be required, and the source node would need to be appropriately informed.

,.-‘ Mean packet delays observed in simulations of three networks, with session packets

. generated in Poisson processes at known rates that are less than the throughput guarantees,
,: have been presented in Chapter 4. The simulator for the schedule-based scheme implements
i the network model of Section 2.1 and the token usage algorithm of Figure 2.1, with additional

Hq; assumptions as listed in Section 4.1. The limited simulations suggest that, for Poisson packet

t;:: generation at session rates less than throughput guarantees, low mean values of packet end-
b to-end delays, relatively insensitive to choice of window-sizes, are obtained even at small but

non-zero window-sizes.

b

R This hypothesis is conditional on the additional assumptions referred to above, and
) the extent of the dependence may need investigation. In particular, assumption (e), that

‘_ "\ round-robin discipline is used to allocate non-priority slots, may be important because this

E;' discipline should be fairer than first-come first-served discipline in offering opportunity of
. packet transmission to sessions (Hahne [17]). It is also likely that assumption (c), the use

_, of fixed real token return times that assume zero waits for the tokens on their return paths
*3;3 in the network, reduces mean packet end-to-end delays. As mentioned in Section 4.4(b)(ii),
b assumption (d), the use of real tokens if possible rather than fictitious tokens in non-priority

_“ slots on subsequent links in the paths for sessions, may account for the lower mean packet

- pre-transmission waiting-times observed with schedules that have higher schedule-delays.

Large queueing delays are expected when session packets are generated at Poisson time-
instants in batches, with geometric batch-size distribution for example (Fuchs and Jackson (8],
Kekre, Saxena and Khalid (22]). Larger window-sizes may be required in simulations with
such packet generation processes. Simulations with sets of session packet generation rates that

exceed throughput guarantees but are feasible, may provide additional insight into the choice of

55

3y
.‘-..'c;."n_-.? cee ~‘\',4 AT RTIES S "‘-"...'_'.'-‘.‘ja, S e " -;r SR T X
"} '.}C“.‘A:’il.‘ﬁ_- \&.‘.‘.(‘L "\.)'I'S} 2O ﬁ'.i.'."'.ﬁ ﬂé_\fﬂfl\] 51 &(S..S} .'5\. J,

window-sizes. Simulations of schedule-based schemes using node-by-node windowing, instead

of end-to-end windowing, may also provide further insight.

56

IS SRR\ o RS YL S s
'). * "..&y::ali‘ .h'r.ni".h}i_'.a .p,i,“)' _:h;:u;_.:;:_.a:# :.:____._.}e.‘}

e " LA anb ki s At sl Ot i s al TO T TN R T IR T TR Tl W e e e aew e -
. ' .
g.

f: , Appendix A

‘ ' Proof of Upper Bound, of Section 2.4, for Packet Intra-Network Delay

b

_\ Assume that the fictitious tokens for the session are carried in first-come first-served
n order over each link in the session’s path, and that the first fictitious token has no fictitious
4 : tokens ahead of it in the path. Let t; 4, f 2 1, 1 < h < H, denote the time at which a packet
EI starts being transmitted on the h-th link carrying the f-th fictitious token. Priority-slots for

the session start on the A-th link in the path, 1 < h < H, at times o, + nT, for all integer values

n. Since fictitious tokens are carried over the first link in priority-slots only, let the integer n;

be defined by

e
AP
v"lr -

ty1=01+n;T, f21, nraa2ng+ 1. (A.l)

38 55

r,

First, it is shown that the time t; 5, 1 < h < H, at which the first fictitious token is

,';j: carried over the A-th link, satisfies
_'\‘ t1,n <opn+mT,1<h<H. (A.2)
. -\:
From A.1,t,1 = ¢y + mT. For 2 < h < H, assume, for purposes of induction, that ¢, ,_; <
on-1+ n1T. A priority-slot starts on the h-th link at time o +n,7T. Since 05—y + n; T+ 1 <
' \)
:::’: on+ 1T, this priority-slot starts after the first fictitious token has been carried over the A — 1-
KK
:.E: th link. A fictitious token is used, if available, in such a slot. Therefore, t; » < os+n;7. Thus,
Z:;,'. A.2 follows by induction.
e
Aw
“‘{3 Then, as shown below, the time t; 5, f > 1, 1 £ h < H, at which the f-th fictitious
A
- token is carried over the A-th link, satisfies @
o tyn<an+n,T, {21, 1<h<H (A.3) |
¥ tﬁ
-
:: For f 2 2 and 2 £ h < H, assume, for purposes of induction, that ti-1hn S on+ne T
LS
. and tya-; < on-1 + ngT. A priority-slot starts on the h-th link at time o) — n fT. Since
3'} on+ ng1T < on + nsT and or-1 + ngT + 1 < oa + nsT, this priority-siot starts after
b, |
e 57 |
" ' |
|
'r ,

DAL

A A A A N s

T L aidh neb - g bk Kk ko k 2ok S B Bl <o bak tal cad cal. Al ade i Al Ak Al ke die Sla A0 She AR 4

the f — 1-th and f-th fictitious tokens have been carried over the h-th and A — 1-th links,
respectively, and it follows that t;, < o5 + nsT. Since A.1 and A.2 hold, A.3 follows by

induction.

Now, assume that a packet P starts being transmitted on the first link at time r.
Further, define F by tp1 £ r < tp41,1, i.e., at time 7, packet P either carries the F-th

fictitious token over the first link, or carries a real token over the link, in between the times at

which the F-th and F + 1-th fictitious tokens are carried over the link.

Let Q,, 2 < h £ H, denote the set of fictitious tokens that, at time r + 1, have
been carried over the first link and are subsequently to be carried over the h-th link, i.e.,
Q={f1<fLF tyn27r+1},2< h < H From A3, if o, + nyT < r + 1, then
tra < 7+ 1, and |Q4] = 0. Similarly, if o + npT > 7 + 1, then |Q,] is at most equal
to the number of values of f, 1 < f < F, for which o4 + nyT > r+1; since r+1 =
orn+(np = (on+npT -r-1)/T|T, r+1<on+{np~|(on+nrT—r=1)/T||IT <r+1+T,
and hence || < 1+ |(op +nfpT =7 —1)/T|. Thus, for 2 < h < H,

ifon+npT <7 +1;

=0,
1l { < 1+ |@ateel=r=l| = otherwise. (4.4)

Number the packets for the session that are in the network at time 7 + 1, assigning the
serial number 1 to packet P, the next higher serial number to the next most recent packet to
enter the network, and so on. Let px, 2 < h < H, denote the highest serial number among the
packets that, at time 7 + 1, are subsequently to start being transmitted on the A-th link. Since
the total number of real tokens for the session is the window-size w, py < w+|Q4|, 2 < h < H.

Then, from A4, px € z5, 2 < h < H, where z, is defined as

{w, ifor+npT <r+1;
Th =

w+1l+ l_ﬂﬂ‘fr—'ﬂj , Ootherwise. (4.5)

Packets are transmitted in order of decreasing serial number at each link. Let Uph, 2 <

h < H, pa 2 p 2 1, denote the time at which packet number p starts being transmitted on

oW L W e LT WL e e T

the h-th link. The intra-network delay for the packet P, numbered 1, is u; 5 — 7 + 1, which is

shown below to be upper-bounded by (og — o1 + 1) + wT.
Let the integer n be defined by
r+1<o3+nT <r+1+T. (A-6)

Then, the first priority-slot for the session at or after time r + 1 on the second link starts at
time o3 + nT. Since 0, + npT < r by definition of F, 03 + ngT < r + T, and it follows from

A.6 that n > np. Further, from A.8,

2r+1, ifn=np;
”’+"FT{<1’+1, ifn>np. (4.7)
Let s; 0, 2< h< H, z5 > z > 1, be defined as
_Jon+nT +wT - (z-1)T, ifn=npg;
”"‘"{o»+nT+(w—1)T—(z-1)T, ifn>np. (4.8)

Then, a priority-slot for the session starts on the A-th link at each of the times Sz,h

First, it is shown that packet number p, pp > p > pa-1+1, 2 € h < H, which at time
r + 1 is to be subsequently transmitted first on the h-th link, starts being so transmitted at

time up 5 that satisfies

Up h < 3.0 2 < h < Hr Pa 2 P 2 Ph-1+ ls (Ag)

where p, is defined as 0.

A priority-slot starts on the A-th link, 2 < A < H, at time s, 5. Since pa < zi, 8p, 4 >
3z, 5, Where 3z, 5 > r+1, as shown below. If n = np, then, from A.7, A.5,and A.8,for2 < h <
H, s;,n=0n+npT+wl - (w+ [‘-’-"-ﬂz}"—'lj)T 27+1.1fn > ng, then, from A.7, there is
an integer H', 2 < H' < H,such that o, +npT <r+1for2<h< H'andop+npT > r+1
for H/+1 < h < H. From A5 and A8, for 2< h < H', s;, o =0op +nT 2 7+ 1; and for
H+1<h<H sgpn= a;.+nT+(w-1)T—(w+[ZU'—”‘f;';1j)T 2r+l+(n-np-1)T >

7 + 1. Thus, a priority-slot starts on the A-th link at time s,, a, at or after time r + 1, and

59

B L R R g e S ey S g e T e T T
Sy L S R R R R S S A S R e s e S Iyt

1 - e o i R g hoaka - k- ol ot A adhh -l b el — il ~ ol g Al ased - il - e -
Cy ”

."{I
BN
e . .
:TC it follows that up, » < sp, 4. For py ~1 2 p > pa_; + 1, assume, for purposes of induction,
D '}‘f' that up4y n < spt1,a. A priority-slot starts on the h-th link at time s, 4. Since 8414 < 8p,1,
. the priority-slot starts after packet number p + 1 has been transmitted on the A-th link, and
LR
RN it follows that up 4 < 8p 4. Thus, A.9 follows by induction.
oY
" \‘\::\
k Then, as shown below, the time up s, 2 < h < H, pp > p 2 1, at which packet number
) p starts being transmitted on the h-th link, satisfies

R
Uph S Spn, 2SASH, pu2p2 1. (4.10)
‘;: For 3 < h < H and pi-; > p 2 1, assume, for purposes of induction, that Uph-1 < 8ph-1
O
. _;f and (for p+1 < pa) up+1,a < 8p41,4- A priority-slot starts on the h-th link at time 8p,»- Since
N .
:,. Spa-1+ 1 < 8,4 and (for p+ 1 < pp) 8p41,8 < 8p,a, this priority-slot starts after packet
number p has been communicated over the h — 1-th link and (for p+1 < Pr) packet number
A

e P+ 1 has been communicated over the A-th link. It follows that Up.h < 8p,a. Since A.9 holds,
‘.‘.'-}"
o A.10 follows by induction.
H %’ From A.10, the intra-network delay, u; y — r + 1, for packet P, is at most Sy, gw—-1+1.
‘,:‘: If n = np, then, since 0; + npT < r by definition of F, and from A.8, sSig—-r+1=
o6 (oh=01+1)+wTl + (01 +npT - 1) < (0 — 01+ 1) + wT. If n > np, then, from A.8 and
‘t" AB,syp—r+1=(og~02+1)+wl+(03+nT~T -1) < (6 — 01 +1) + wT. Thus, the
Tl)
,‘-"1; intra-network delay upper bound, (¢ — o1 + 1) + wT, of Section 2.4, is proved.

.80
198

.

A
N
o
»"
1.
."_-J':: |
‘}.«:‘ i
N

- i

e L e T e e e L
P LR A LR '.. ',-.(Caw \,lq, o W T e T T e AT e e . . . AR ,‘\ AT R o~ -.X"h N
.\1_‘-,_(-,"?‘._2"§;;;:. DA TNLh SRR A L T e SRR _\"_.‘“ AN

. ‘.F'.,
1RSS!

Appendix B

A Procedure for Transforming from Non-Integer to Integer Schedules

Without Increasing the Sum of Schedule-Delays

The procedure referred to in Section 3.1 is presented in this appendix.

Let z0 denote the start-time of the i-th priority-slot in the given non-integer schedule.
Assume that the priority-slots are numbered in non-decreasing order of ¢? = z0 — |20, i.e.,
€ < € for i < j. The sum of schedule-delays for the schedule can be expressed as 3, ¢;€? + c.
Here, ¢; is -1 or 1 if the i-th priority-slot is on the first or last link, respectively, in the
corresponding session’s path, and the path has more than 1 link; ¢; is O otherwise; and ¢ is an

integer constant.

Consider the following iterative procedure, starting with k =0:

k+1 _ {ff = bminel, if 305 c,-cf 20;
€+ (1-6%,,)ek, otherwise;

where

g [0 ifef=00rl;
' 1, f0<ef <

§hin = min ef; 8% . = max €.

S:ed=1 ied=1
The €} have the following properties: 0 < ¢ < 1; ef S ebfori < jifor k> 1, T, cief +¢ <
Ticiet ' +cand ¥, e* < 3,1 — 1. The procedure terminates at k = K where, for each

i, X isOorl.

Let T denote the integer frame-time for the network. Define z; = |22] + X, yim =

J.,J. -
1

A
2
" L
.

z; + mT, and y),, = 20 + mT, where m is an integer. Then, yim = y?, - 20 + z; =

Fa

W) =120 +2: = Ly?,mj +¢X, and hence 199 m) € vim < 90, + 1. Since y; m < ¥ m)+1

and Ly;?',,_l SYimif g, +1< y?',, and [ygmj +1< [y?'nj — 1, then yim + 1 < y, . Since

@ =Um = (Wl i 9m +1 <97, and 99,,] +1=y2,], then € < ¢; hence, € < X

el il Sl Sl Sl S R-Ralhi S i db B S At h Ach Bt A tA A R A RSl BER RS Aty |

)

N2 and, since Yim = |¥i,m] + €, ¥im +1 < y;n. Thus, if Wmt1<y), then yim +1< yjin.
Ly Furthermore, 3, cief + ¢ < 3, cie? + c. It follows that there exists an integer schedule for
o which z; is the start-time of the i-th slot, and the sum of schedule-delays is not greater than

W that for the original non-integer schedule.

D

-{:~_
v
I

heh 62 i

I TP I W W W UK

Bl B” ot o R RS ol dO I i R o GRS P AN SRR R b R L IR R '.T

Appendix C

Corollaries of the NP-Completeness Result of Theorem 3.1

Consider a polynomial-time algorithm A for computing integer schedules. Let A(I)
denote the sum of schedule-waits for the schedule computed by algorithm A for a network in-
stance I, and let OPT(I) denote the minimum sum of schedule-waits for the instance. Assume
that there are no polynomial-time algorithms for solving NP-complete problems. Then, the

following results hold.

a) For any fixed positive integer K, there is an instance I such that A(I)-OPT(I) > K.

This is shown as follows.

Suppose, to the contrary, that A(I) - OPT(I) < K for all instances I. Consider the
instance I’ that consists of X +1 copies of an instance I. Then OPT(I') = (K +1)OPT(I). The
schedule computed by algorithm A for I’ consists of a schedule o, for each copy ¢ of I. Since
A(I')-OPT(I') L K, Eg__’tl[sum of schedule —waits for ¢, — OPT(I)] < K, and therefore
for at least one value of ¢ the sum of schedule-waits for ¢, must be OPT(I). This provides a
polynomial-time algorithm for solving the ‘Network 3-Periodic Zero-Wait Scheduling’ problem,

and Theorem 3.1 is contradicted. Hence, result a) is true.

b) For any fixed positive integer R, there is an instance I such that A(I) > R OPT(I).

This is shown as follows.

Suppose, to the contrary, that A(I) < R OPT(I) for all instances I. Then, OPT(I) =0
implies that A(I) = 0. If A(I) = 0 then OPT(I) = 0. Therefore, OPT(I) is zero if, and only

if, A(I) is zero. This provides a polynomial-time algorithm for solving the ‘Network 3-Periodic

Zero-Wait Scheduling’ problem, and Theorem 3.1 is contradicted. Hence, result b) holds.

c) For any fixed positive integers K and R, there is an instance I such that OPT(I) > K
and A(I) > R OPT(I). This is shown as follows.

63

.. - .o .
T o Tele, \""4’ . ..

‘ .ﬁ*.k ﬂ, L e : -‘: f.'}l.ﬂ- _J' .d}.k\.nfl‘f 3N L:_‘.};.'dbd_i_ :unf‘xlidu..\.,.iu A.:\MM.&. LLS.\:.C:L‘;.&L,{AM.‘;..‘u,.au;.J

i RRE

X XA
s “. » \, .. ."I}‘.

._
il
RS -~

n’u.‘b‘q"b“.b-:' ~
-
o f D

v
4

.'."d" e ek
P

O

Suppose, to the contrary, that for all instances I such that OPT(I) > K, A(l) <
R OPT(I). Consider an instance I” such that OPT(I"”) > K (I" may consist of copies of
any instance I’ such that OPT(I"’) > 1). Consider the instance I’ that consists of I’ and
R OPT(I") copies of an instance I. Then, OPT(I') > OPT(I") > K and, hence, A(I') <
R OPT(I'). The schedule computed by algorithm A for I’ consists of a schedule for I and
a schedule o, for each copy ¢ of I. Suppose OPT(I) = 0. Then OPT(I') = OPT(I") and,
hence, A(I') < R OPT(I"). Then, since OPT(I") > K, K+Zf=?PTU")(sum of schedule —
waits for o) < R OPT(I"). Therefore, for at least one value of ¢ the sum of schedule-waits in

o, must be 0. This provides a polynomial-time algorithm for solving the ‘Network 3-Periodic

Zero-Wait Scheduling’ problem, and Theorem 3.1 is contradicted. Hence, result c) holds.

64

Appendix D

The Scheduling Algorithm, of Section 3.3,
for Networks with Triangular Link-Precedence Graphs

Figure D.1 shows the type of network for which the link-precedence graph is a triangle.
The number of sessions sharing any link is assumed to be at most equal to the frame-time
T. The following scheduling algorithm constructs a minimum-wait integer schedule for such a
network in linear-time. The minimum sum of schedule-waits is at most 1. Priority-slots are
scheduled in the three link-frames, first for the two-link ab-, bc-, and ca-type sessions, and

then for the single-link sessions.

Let w; ; denote the weight of arc (1,7) in the link-precedence graph, i.e., w; ; is the
number of ij-type two-link sessions using the i-th and j-th links. Assume, without loss of
generality, that wap < wp . and wap < wea. Let ny = w,p, na = min(wp e, we,a) — n1, and
n3 = max(wy,c, We,a) — (M1 +n2). Several cases are defined below based on the values of n;, ng,

and n3. The sum of schedule-waits for the schedule that results is 0, except in case E(b) where

it is 1.
Case A) n3 =0:

Schedule priority-slots for n, each of ab-, be-, and ca-type sessions, and n; more each

of bc- and ca-type sessions, as follows.

Link

a: ab ca @b ca ca . ca

b: be ab be ab be . be

c: ca be ca be ca be e we.ca be
Ist 1st nyth nyth Ist Ist nath nath

65

. R
R RN A 2l Y.
— e s

Network:
b ab-type session

g c

bc-type session

"L .4
b Nty o

]

X
o

ca-type session

e Link-precedence graph:

::_ Figure D.1 Network and Link-Precedence Graph for Appendix D

A A e

~ { P
UGN

079§ &\, .A.| nt n

Case B)ng > 1, n; 2 1,and wy, > wea:

Continue the schedule of case A as follows (in the sequel, a ‘*’ indicates a priority-slot

that had been scheduled previously, at either the same or a different time-instant in the frame).

Link

a: ca®
b: be* be be b

e: ca* be* be be b

nath nath I1st 2nd ngth

CaseC)ng 21, ng > 1,and we g > wp et

Modify and continue the schedule of case A as follows.

Link

a: ca*® ca &6 ca
b: be*

¢ ca® ¢ ca ca Dbt

ls¢ 2nd ngth

(Priority-slots for the last of the ny be-type sessions have been repositioned.)

Case D) n3 > 2, na =0 (in the sequel, wy . > w, 4, and the construction to be used if

We,a > Wy, i8 similar to that shown for wy . > w, 4):

Modify and continue the schedule of case A as follows.

Link

a: ca?* ab?*

b: de* be b be ab®

e ca® be¢® be be ke
nith nyth 1t 2nd B

67

o et ey PR e e T
RS ‘.A'h-‘.'t' .. e T e T T '-.“\’<'

. Tty ‘.t o .t ' e
SRR SR S UPI . INPVS U o=, BRSSP SR o I\

0

M :“ (Priority-slots for the last of the n, ab-type sessions have been repositioned.)

s
. { CaseE)ng=1,n;=0:
o

j‘_f.{:: Sub-case a) T > 2n; +2:

i Continue the schedule of case A as follows.

:.‘:; Link

3__ a: ab* ca?

e b: be* ab?* be

::'Z: c: ca® be? be

~:_.¥ nith nyth nsth

o

ey . Sub-case b) ny =1,4,7,10,...,and T =2n, +1 (= 3,9,15,21,...) :

_- Modify and continue the schedule of case A as follows.

o Link

R a: ab* ca*

. \1\ b: be* be ab?

:;;-:: e: ca* be* b

).r 3‘ (A priority-slot for the last of the n; abd-type sessions has been repositioned. The sum of
3 ‘:}:‘ schedule-waits is 1.)

B

o Sub-case c) ny = 2,5,8,11,...,and T = 2n, + 1 (= 5,11,17,23,...) :

A

} The set of six columns marked by ‘*’-s below is included in the link-frames (n; - 2)/3
}‘ ;&: times.
‘ 5 Link
: _,.E E a: ca ca ab ab ab ca ... ca ca ab ab
::f:.‘j b be b b ab ab ab ... b b b ab ab
i ¢ ca b be be ca ca ca be be be ca
1 ‘ 2 * * . * *

\ 68

e

e

e ey e e ey g T AR MR LN T e e T

= .
AN A

Dy %
R

v
.

times.

Link

TR T

TG ey

T e Tegy

2 i od B S Al S e L ha e i a4} ey =

Sub-case d) n; = 3,6,9,12,...,and T =2n, +1 (= 7,13,19,25,...) :

The set of six columns marked by ‘*’-s below is included in the link-frames (n; — 3)/3

ab
be
be

ab
ab
be

ab
ab

ca

ca
ab

ca

ca
be

ce

ca ...
be e

be .

69

LRI
T A

i wtl e

EE N S
" .
SN ‘_.J':.. _-u',
- e -
[N N

ab ce ca ca
ab ab be be be

ca co ca be be

ey .
O

| WL WU

.

T ey b Al Sk et i dindie oAl ed ek de s A A b i et fadiedi e |

Appendix E

Proof of Inequality 3.6

Priority-slots are scheduled on the [-th link at iteration { in step 4 of algorithm Ajursotic
using an assignment algorithm that minimizes 3° ., W;. In this appendix, an assignment

algorithm is described for scheduling these priority-slots at integer time-instants so that

Swis(5) T . (3.6

acAy aeAq

A session is defined as being in transit on the I-th link if i) for link numbers ¢ and
J, the session has the i-th, l-th, and j-th links as consecutive links in its path, i.e., the i-th
link precedes and the j-th link follows the l-th link in the session’s path, and ii) (¢,!)eA; and
(1,7)€Ay, i.e., both the i-th and j-th links have already been scheduled. Link-frames repeat at

intervals of the frame-time T. Hence, for each of the session’s priority-slots on the i-th link,
there correspond i) a priority-slot to be scheduled for the session on the I-th link, starting from
0 to T — 1 time-units after the finish of the slot on the i-th link, and ii) a priority-slot for the
session on the j-th link, where the integer length S of the gap between the finish of the slot on
the i-th link and the start of the slot on the j-th link satisfies the condition 1 < § < T. The
amount of wait that the session contributes to 3°, ., W, is the sum of, first, the modulo-T
wait between the finish of its slot on the s-th link and the start of its slot on the I/-th link, and,
second, the modulo-T wait between the finish of its slot on the I-th link and the start of its
slot on the j-th link. If the session’s priority-slot on the [-th link is scheduled so as to lie in the
gap defined above, then the contributed wait is the difference, S — 1, between the gap-length
S and the unit duration of the slot. Otherwise, the session’s priority-slot on the I-th link is
scheduled so as to lie outside the gap of length S, but so as to finish within T — S time-units
after the end of the gap; then, since a priority-slot starts on the j-th link a frame-time T after

the end of the gap, the session’s contributed wait is T + S - 1.

70

\'\

S v R R R A R I S A S S

L sl o T S N I N R NN PV TN T T TR N eE T L T ATyl v Yy oYy Ty vy T O T e oe e .——-—W"T

A session is defined as finishing (respectively, starting) on the I-th link if i) for link
number ¢ (respectively, j), the session has the i-th and I-th links (respectively, the i-th and j-
th links) as consecutive links in its path, ii) (¢,1)eA; (respectively, (I, 7)€A;), and iii) the session
is not in transit on the I-th link. vertex. The I-th link is preceded (respectively, followed) in the
session’s path by the i-th (respectively, j-th) link. For each of the session’s priority-slots on the
i-th (respectively, j-th) link, there corresponds a priority-slot to be scheduled for the session
on the [-th link, starting (respectively, finishing) from 0 to T — 1 time-units after (respectively,
before) the finish (respectively, start) of the slot on the i-th (respectively, j-th) link. Thus, the

session’s contributed wait is an integer ranging from 0 to T — 1.

First, priority-slots for sessions that are in transit or that start or finish on the {-th link
are scheduled in the frame on the link at integer time-instants, using the assignment algorithm
to be described. Next, priority-slots for all other sessions that use the link are scheduled at

integer time-instants in the frame that are as yet unassigned.

Let n'" denote the number of sessions that are in transit, and n*/ the number that

start or finish, on the /-th link. Then, n*f + nt* < T and Loea, Wa = n*f +2n%,

Case A) Assume that n*" = 0.

Schedule priority-slots for the n*f start/finish sessions so that their individual con-

tributed waits are upper-bounded by 0,1,2,..., n®/ — 1, respectively.

Then, .
et n*f -1 T-1 T-1
ZW'SZi:n‘I.<)Sn"()=<)Ew,.
aeAq 1=0 2 2 2

Case B) Assume that n'" > 0.

Let K denote the number of distinct gap-length values among the sessions in transit,

and let ny, 1 < k < K, denote the number of sessions in transit that have gap-length Sy,

71

R R AR Rs3s

A o IR W TR Tl e e e T T e T el R T W Ty R TwA el e T T v R e s e,

where S; < S; for 1 1 < j < K. Then, ngl nig = n*. Let
k-1
mk=min (Sk—zm,-, nk), ISkSK (El)
=1

Then, Z.—x m; < Sk, 1 <k< K.
Sub-case B(I) Assume, further, that n®/ < min;<x<x(Sk — 2:-;1 m;).

Then, n*/ = 0 if my < n for at least one value of k. Consider the following scheduling

algorithm.

Step 1) If my, = ny, for all values of k, then schedule priority-slots for the n*/ start/finish
sessions so that their individual contributed waits are upper-bounded by 0,1,2,...,n*f — 1,

respectively.

Step 2) For each value of k from 1 to K, in increasing order of k, schedule priority-slots

for my of the ny transit sessions that have gap-length S; within their respective gaps.

This can be done since, when m (< my) of the m, slots have been scheduled, the total

pumber of slots that have been scheduled is

k=1 k=1
'!+Zﬂk+m<(sk—2m.)+z:m.+m S;.—(mk-m)<5k.

s=1 =1 =1

n*/ + E:=1 my slots will have been scheduled by the end of this step.

Step 3) If there is a value k;, 1 £ k; < K, such that m,, < n;, and m; = n; for
k1 +1 < k < K, then do the following for each value of k from 1 to k;. Schedule priority-slots
for the remaining ny — m; transit sessions that have gap-length Sk, at integer time-instants in

the frame that are as yet unassigned.
All n*/ + nt* slots will have been scheduled by the end of this step.
Now, 3-,c4, Wa is upper-bounded as follows.

72

...........

B - . e ce et -
"My - - Iy . [PN (]
hd P R R B N A N e i L E A TR S S e e Tt e),
soat v)' Sl el T S P SRR e e
A ! .

A A A R N e A e R L e S R s e

L.
N

-
Lf ¢
% DA A

VNS

{

S A-A ag LA i s aia gl oo i o sl AL TP YT Ty vero”

Sub-case B(I)(a) Assume, also, that m; = n for all valuesof k, 1 < k < K.

n'f -1
ZW’(Z:+an5k—1)
atAg =0 k=1
n*f -1 X
sncf(-)+(T—1)zn,,

g(n'f+2n")(':";—l) ('I)Zw.

acAy
Sub-case B(I)(b) Assume, instead, that my, < nx, and my =ni for k; +1 < k< K.

From E.1, my, = Sk, - 27 my, or T8 m; = Sy, ; hence, n*/ =0.

z W < Z mi(Sk — 1) + Z("" -m)(T + Sk - 1)

aeAy k=1
K ky
= Y a(Sa-1)+) [me(Se-1)+(ne-m)(T+S-1)]. (E2)
k=k;+1 k=1 -

Now,

Z[m,.(sk - 1)+ (nk - m,.)(T+S,. - 1)] = (T— I)an+ ans,, -Tz:mk

=1 k=1
=(T-1) Z nk + E neSh — TSk,
=1 k=1

< (T - 1) Z ny — (T - Z n;,) Sk, (E3)
k=1 k=1

Dropping the negative term in E.3, substituting the result in E.2, and then upper-bounding
Se-1by T -1,

ﬁ\;‘w'qTq Zn,,_(“1)§w.

Sub-case B(II) Assume, instead, that n*/ > min;¢x<x(Sk = ZLI m;).

Let So =0, ko =0, and

k
.= i - ; <7<
k; = maxarg k,-,?llgksx (S’;, Z m.) ,1£7< 1, (E.4)

" - “—mmmmvﬂmmwnv"f'vT

,c..g. where Sk, —Ef;l m; < n*f < min,.,.,.ls;,sx(sh—zf:l m;) (ork; = K and SK‘Z:::; m; <

'h',.lo ﬂ.f) .

Step 1) For each value of j from 1 to J, in increasing order of j, do the following.

1(i) Schedule priority-slots for S, — Sk;_, — Ef; k;y+1 ™ start/finish sessions so that

: y their individual contributed waits are upper-bounded by Si,_,, Sk,_, +1, Sk;_, +2,..., S, -
S Y
ot k .
*-1534 Zaik,-_,ﬂ m; — 1, respectively.
:; Y

1(ii) For each value of k from k;_; + 1 to k;, in increasing order of k, schedule priority-

A slots for m, transit sessions that have gap-length S; within their respective gaps.
y »
W
:n:;‘! It can be verified by induction that Si, - Ef;,. 141 M siots wili have been scheduled
® by the end of sub-step 1(i). The scheduling in sub-ster 1(ii) can be done since, when m (< my)
A
":"E:“ of the my slots have been scheduled, the total number of slots that “ave been scheduled is
M
:;‘»3 kj k-1 x k-1

. Sui— 3, mil+ D mitm<(Si- Y mil+) mi+m
‘Q‘\ ¥ i=k"_1+1 C'=k,'-l+1 (Sh,‘-|+l ‘gki-l+l

e
_ Y =Sh°(Mg - '-'))<Sb.
1)
; oY Adding the Zf; k;_,+1 T slots scheduled in sub-step 1(ii) to those scheduled in sub-step 1(i),
s a total of Sk; slots will have been scheduled by the end of sub-step 1(ii).
ﬁ.h' 2:: 1 M slots for transit sessions and Sy, - f;l m; slots for start/finish sessions will
he. have been scheduled by the end of this step.
"' -]
‘\. Step 2) Schedule priority-slots for the remaining n*/ — (S, - Z:‘__{, m;) siart/finish
L) '.L
¢ {"‘: sessions so that their individual contributed waits are upper-bounded by Si,, Sk, +1, Sk, +
1 2,..., n* 4+ :f;‘ m; — 1, respectively.
7 :j:;:: All n*/ start/finish slots will have been scheduled by the end of this step.
i
— Step 3) For each value of k from ks + 1 to K, in increasing order of k, schedule priority-
E‘:i‘ slots for m, transit sessions that have gap-length S, within their respective gaps.
)
'- 74

S R

R A T S A N, SRy SRR NS DA
ead s ".'l"i't{.’f ST E RN TR PAT N CL DR O "_'(.1'_‘.1.:;:(-5)'?

This can be done since, when m (< m,) of the m slots have been scheduled, the total

number of slots that have been scheduled is

k-1 k k—1
n'f+z:m.-+m5 (Sk-zm.-) +Zm,-+m

=1 =1 =1

= Sk — (mx — m) < Sg.

n*f + E‘K=1 my; slots will have been scheduled by the end of this step.

Step 4) For each value of k from 1 to K, schedule priority-slots for the remaining
ni — m; transit sessions that have gap-length S; at integer time-instants in the frame that are

as yet unassigned.
All n*/ + n*" slots will have been scheduled by the end of this step.
Now, 3°,,4, W, is upper-bounded as follows.

Sub-case B(II)(a) Assume, also, that m, = n; for all valuesof k, 1 < k < K.

J k;
Yowi<> Sk,-_;'i'(sk-_;+1)+(Sk,'-1+2)+"'+(sk,-" > ni-1

aeAy j=1 s=kjo14+1

J k;
+y Yo ne(Se-1)

i=lhk=ki_,+1

ks
+ [Sg, +(Se, +1)+ (Se, +2)+ -+ + (n‘f+z:ni - 1)}
. =1
+ > ne(Se-1). (B.5)

k=ks+1

The four terms in E.5 correspond to the waits contributed by substep 1(i), substep 1(ii), step

2, and step 3, respectively.

For1<j<J,

k; ky

z nk(Sk—1) < (Sk; -1) Z: ny

k‘—"-kj..l‘.'l k=k,'_1+1

T' - e e TR LR O TRRTOET e Ra= diad alied Sadd Ba® So1 B Aok -Aab A A A A A A 0 A A S S A A Ats Ak &Y
: ‘4).'1:' -T
oy
AN
A
3
5 ky k;
|'
2 =[[8se- Do nm|+|Sy- Y mit1]+e+(Sy-1)
S s=kj-1+1 s=kja 1 +1)
T + Yo omi-1|+| Y m-2]+--+0]. (E.6)
,--_\ |'=k"_l+1 ‘=kj-1+1
LR
b b
G This can be seen by adding corresponding terms of the two bracketed expressions above.
Q%
N The first line in E.5 is a sum of increasing integers, with consecutive integers from Si,_,
b~
(to Sk, - Efik,-..;-n n; — 1 and then a gap between S;, — Ef.i.k,--;-}-l n; — 1 and Sy, for each
‘ value of ;. The first bracketed expression in E.6 fills in the gap for the corresponding value of
i j. Thus, from E.5 and E.8,
;_3.':_:
:‘::-.' ks
0y ZW;S[1+2+---+(n'f+2nk—l)]
= aeAg k=1
ig ‘.'r‘ J - kj
5 +Y (14244 D> me-1
j“.} i=1 k=k;_1+1
40 K
. + Z nk(Sk — 1)
o k=ks+1
-t ks of ks
O . eof n’’ + 2k=1 ne -1
3 - (£ 3 n.,) (:
Bin k=1
) J ki Zk" ng—1
i NI IE
1‘::“ I=1 \ k=kjo+1
N X
b + D n(Se-1)
) k=k;+1
(,,. [¥} ky K
L3 T-1 T-1
o of -1 - -
;:: _<_(n +Zn,.)(>)+(Em)(>)+(T 1)) nm
g k=1 k=1 k=kj;+1
o0 P T-1 T-1
Y - . — —_—
) =|n +2Em. (T)—< 3)Zw,.
A "‘ k=1 acA; !
N_(’ 3 ‘
‘ ?‘:‘:]
..’:¥ '\
149N |
%1 I
i
U~
[
Y '-.I‘:

.' 76

oS Sl Ak el at et o diac o f ot POV EPTTRIOIRITIRUN TCAREN BN DTN mTorsrereTwrTwrare o aas Sha Lo L-oa Mia f s L a o o 4 -

209 .
A
and
"L
3
: %“-} Sub-case B(II)(b) Assume, instead, that my, < n,.
; ._1. From E.1, mg, = S, - Zf;;l m,, or Zf;l m; = Si,; hence, from E.4, m; = n; for
:{ k1 +1 < k < K. Thus, for j = 1 in step 1, no start/finish sessions are scheduled, and
~
3 s ks
ZWiska(S;,-l)
N " acA; k=1
’% J ky
" 3 Sk F Sk + D)+ (S, + 2D+t [S = Y mi-1
%‘ Q 5= s=kj_1+1

k;

J
+Z Z nk(Sk - 1)

=3 k=kj 1 +1

I R s
e R At

ks
) +[Sk,+(5k,+1)+(5k;+2)+“‘+(n'f'i'zm.'—l)]
=1
- K ky
oo + Y n(Sk-1)+ D (ng—mp)(T + Sk - 1), (E.7)
%{,i k=ks+1 k=1
‘.«""-ji Combining the first and last terms by E.3, and combining the second, third, and fourth terms
o with the help of E.6,
t::'_ ky ky
o DWiS(T-1) ne- (T -3 nk) Sk,
acA k=1 k=1
, ks
-‘_.14 + [Sk, + (S, +1)+-- 4+ (n" + Z my — l)]
s‘:\:_‘:: =1
l:";l? -’ k,‘
L +Y (1424 > me-1
i =2 k=kj1+1
i "':'.' K
ee +) m(Sk-1). (E.8)
A k=h;+1
"
D :J‘:
Since 5L, my = Si,, and my, =n, for ky + 1 < k < ky,
> ks
::r':.‘- [Sh + (Sk, +1) -+ (n‘f + Z my — 1)]
iy k=1
Yy

o ks kg
1;1 =(nlf+ z: nk>sk,+[0+1+'--+(n'f+ Z "k‘l)J- (E.Q)

k=k;+1 k=ky+1

7

- LR CRCTURE A e T T B T AN _..-.._:_..; ';_\:(-'}}:’- }.‘-(.--.- :.. -;J
AALALELHNORONERL L) Y T R S Y N S T S IR A WD S S 2 Y Y RO

This can be seen by adding Sk, to each of the terms in the last bracketed expression above.

Combining the second and third terms in E.8 with the help of E.9,

k k
ZW; < (T"I)Z‘nk_ (T—n'f-zl:nk) Sk,
=1 k=1

atAy k:
ks
+ [1+2+"'+ (n"-ﬁ- z: N — 1)]
k=ky+1
Z wl By ne—1

+ ne =kj~1+4+1

Z=:2 k=k,°z_;+l 2

K

+) nk(Sk-1).

k=ks+1

Dropping the negative term in the above expression, and upper-bounding the third, fourth,

and fifth terms,

ks ks
ZW;S(T—I)I‘Z;",‘.*.("cf_*_ 2 "k) (%)

acAy =k1+1

+(i nk) (Z;—1)+(T-1) }K: n

k=k;+1 k=ks+1

78

PO T TR T T T T T T Y L R -l e i e et © s el e et i -t -) Dl b iy i~ el A A i e e R

Appendix F
The Expected Waiting-Times at a Slotted Link
for Some Packet Arrival Processes
The analysis presented here is referred to in Chapter 4.

Assume that all slots are of unit duration, and that each packet requires one slot for

transmission on the link. Three packet arrival processes are considered.
a) Poisson packet arrivals at rate p.

Let g, denote the number of packets at the link at the beginning of the n-th slot,
including the packet, if any, to be transmitted in the slot. Let P;' denote the number of packet

arrivals during the n-th slot; P is a Poisson random variable with mean p. Then,

s =P} +an= {2 H 20 (F1)
Let G(z) denote the transform E(z%) in steady-state. Then, transforming F.1,
G(z) = /=N {z7Y[G(2) - G(0)] + G(0)}, (F2)
so that
G(z) = G(0) [;:;(-;-'_-11)—] , (£.3)

where G(0) is the probability 1 — p that no packet is to be transmitted in a slot. E(g,) in

steady-state is obtained from G(z) as

3
E(g,) = CG'(1) = P
(1) = ') = o+ 5 (F4)
The expected number of packets waiting at a random time is
B(qa) - : (F.5)

2(1-p)

79

~

. -
S . ;
.. . BT BN TR PRI W . , »
s — N T e A A i S \‘uh':'.d

N L. ow e AL MR S Seltet et
. Lt e L, e - e et
N DA . PR Bt S A T, RN

LY
- ‘).

~
'

]
-
-
-

T T R——

Thus, from Little’s theorem, the expected packet waiting-time is

1 P 1
(3) 2(1-p) 2(1-9) (F6)

b) Poisson packet arrivals at rate A, 0 < A < 0.5, combined with rate 0.5 deterministic

packet arrivals, at the starts of alternate slots.

Assume that the deterministic packet arrivals are transmitted immediately upon ar-
rival. Then, only Poisson packet arrivals may be required to wait. The Poisson arrivals are
transmitted in alternate slots. Let type ‘a’ denote the type of these slots. Then, the number
gn of packets at the link, at the beginning of the n-th type ‘a’ slot, satisfies F.1 for p = 2A.

Hence, the expected number of packets waiting at a random time is obtained from F.5 as

[#’7)] p=2A B 1—-};\- A(FJ)

Thus, from Little’s theorem, the expected packet waiting-time is

1 A 2\
(A +0.5) (1-2,\) = 1-axt (F.8)

c) Poisson packet arrivals at rate A, combined with rate p Bernoulli packet arrivals at

the starts of slots. 0 < A +p < 1.

Let g, denote the number of packets at the link at the beginning of the n-th slot,
including the packet, if any, to be transmitted in the slot. Let P and B denote the numbers
of Poisson and Bernoulli packet arrivals, respectively, during the n-th slot; P is a Poisson

random variable with mean A and B a Bernoulli random variable with mean p. Then,

_ pn . pn _JL ifgn 21
qn+l'—P,\ +B,+qn {0’ ifqn=0. (FQ)
Let G(z) denote the transform E(z%") in steady-state. Then, transforming F.9,
G(z) = 2B=V((1 - p) + p2l{z7(G(2) - G(0)] + G(0)}, (F.10)
80
RN e e e

ww\w,ﬂ

L a0 o p 2 aag ana .m

-
I’.~

s
)
W

%

3

5 so that

A (z - 1)1+ p(z= 1) }
. =G , .1
‘ 61 = 60 i S ey (1)
where G(0) is the probability 1 — (A + p) that no packet is to be transmitted in a slot. E{(¢,)
‘: in steady-state is obtained from G(z) as

A(A + 2p)

» E(ga) =G'(1)=(A —_— F.12
()= ') = (9 + g7 s (P12
N

ﬁ The expected number of packets waiting at a random time is

S

A A(1+p)

e E(gn) - (= = F.13
() - G +p) = got 2 (1)
Thus, from Little’s theorem, the expected packet waiting-time, evaluated for 0 < A < 0.5 and
o p=0J5,is

; A(1+p)] 32

. = —_— F.l4
- [2[1 -+ I+ p)],m0s 1-4A2 (F.14)

P, A .

A

q

2
»

‘ *("vr:A

Aot " "‘“. :h'

81
A

o

“v‘*f"; e
Eal e ! 3 * St Ba e Y s

) I ‘-"
'

Appendix G

L FORTRAN Programs for Simulators SB and FCFS

The programs listed in this appendix, and the respective starting page numbers, are

as follows:
o
:.:' 1) Program SimulatorSB (main program for simulator SB).............cccovunn..... 84
.’_‘.1_-. ‘
2) Subroutine ScheduleBasedScheme (the core of simulator SB) 89
:::{:E 3) Subroutine GenerateArrivals
4? (generator of Poisson packets in slot for simulator SB)cccooiieian...... 92
K \ 4) Subroutine Measure (recorder of measurements for simulator SB) 93
\ :::
5) Integer Function WrapAroundIncrement,
e Integer Function FirstLink, Integer Function LastLink
Lt
e (functions used by both simulators SB and FCFS)ccovviiiviienneenan..... 96
e .
Rt 6) Real*8 Function Ran
‘ (generator of uniform random numbers in [0,1),
2= used by both simulators SB and FCFS)............vvuuuerriinnneeninnnnnnnns.. o7
Lo
k. <~
.) 7) Block Data Network (data used by simulator SB for network of Figure 4.1)........ 98
R
o 8) Program SimulatorFCFS (main program for simulator FCFS) 99
oo
_ 9) Subroutine FCFSScheme (the core of simulator FCFS).........coovvvivivnnnn.... 105
o
33 10) Subroutine GenerateArrivals
'.i::: (generator of Poisson packets in slot for simulator FCFS) 107
=
i;: 11) Subroutine Measure (recorder of measurements for simulator FCFS) 108
R
AR
R 82
Ly
R
00 ARG I o b-*:-lﬁlc 2 L8 ;C '.:.r' ._d'} - &;h Y J‘" "" o "-cq.ulmhd.‘ﬁ. Lid, ol 0

 WFNFTVTTFEFFITNIWNTIN TN, N R V- yRTo¥YINgYUOYS VPO R P IR SFmye 7w

12) Subroutine Enqueue, Subroutine Dequeue
(enqueues packet in link-queue in simulator FCFS,

dequeues packet from link-queue in simulator FCFS)............................. 112
13) Block Data Network (data used by simulator FCFS for network of Figure 4.1)....113

The programs are written in Data General’s FORTRAN77 for the MV10000 computer.
Comment statements in the programs begin with the symbol ‘I’. For ease of formatting the
programs for inclusion in this appendix, continuation symbols have been omitted from contin-

uation statements and statement labels have been shifted to the right.

83

T et e N e _‘\{'

. gTe e
L i N A Y
-

: »
. .-.'\. ..'-- .:\'."'."' '\\'\“.ﬁ ‘.." \'5

gy
)

R -
o 1 A
{{‘r“‘ 3" y e

LA I?.L.L_J‘

2

‘-.-'du‘-‘_.

- e
NI
FEIR IS,

- -
A' 5
) v

©
R N

- e N
’
e’

R, 2, el

v .o
e TN

ey a,
l.‘s-—'- LA

48

‘:‘. ':‘v"-’,l'])
ALY LS

3
&

SRR
A

J

‘-
Pate's

L3
3

r
.

e

s
L e TN
e

l.’l;ll
A

-4

(4
]

-
3
RN

?l‘.

L XX 1
O

)
Sh

- oy

Program SimulatorSB ! Main program for simulator SB

integer FirstLink

include 'ParameterlS.f77' ! MaxLinks, MaxSessions

include 'ParameterTB.f77' ! TimeBufferLength

common / globalblock / NumberOfLinks, NumberOfSessions

integer Window, FinalTime

common / simulatorscheme / Window (MaxSessions)

conmon / functionblock / NumberOfLinksForSession (MaxSessions),
Links (MaxSessions, MaxLinks)

real®*8 Seed

common / arrivalbiock / Seed, TotalGenerationRate,
SessionDistribution (MaxSessions)

integer GenerationTimeBufferEntry, TransmissionTimeBufferEntry,
TransmissionTimes, SumOflntraNetworkDelays,
SumOfSquaredIntraNetworkDelays, SumOfDelays,
SumOf SquaredDelays

real MinEndToEndDelay, MaxEndToEndDelay,
MinPreTransmissionDelay, MaxPreTransmissionDelay

real*8 GenerationTimes

common / measureblock / NumberInProcess (MaxSessions),
GenerationTimeBufferEntry (MaxSessions),
GenerationTimes (MaxSessions, TimeBufferLength),
NumberGenerated (MaxSessions),
TransmissionTimeBufferEntry (MaxSessions, MaxLinks),
TransmissionTimes (MaxSessions, MaxLinks, TimeBufferLength),
NumberTransmitted (MaxSessions, MaxLinks),
MinEndToEndDelay (MaxSessions),
MaxEndToEndDelay (MaxSessions),
SumOfEndToEndDe lays (MaxSessions),
SunmDf SquaredEndToEndDelays (MaxSessions),
MinIntraNetworkDelay (MaxSessions),
MaxIntraNetworkDelay (MaxSessions),
SumOf IntraNetworkDelays (MaxSessions),
SumOfSquaredIntraNetworkDelays (MaxSessions),
MinPreTransmissionDelay (MaxSessions),
MaxPreTransmissionDelay (MaxSessions),
SumOfPreTransmissionDelays (MaxSessions),
SumOf SquaredPreTransmissionDelay (MaxSessions),
MinDelay (MaxSessions, MaxLinks),
MaxDelay (MaxSessions, MaxLinks),
SumOfDelays (MaxSessions, MaxLinks),
SumOfSquaredDelays (MaxSessions, MaxLinks)

integer Session

real MeasuredGenerationRate (MaxSessions),
MeanEndToEndDelay (MaxSessions),
MeanSquaredEndToEndDelay (MaxSessions),
MeanIntraNetworkDelay (MaxSessions),
MeanSquaredIntraNetworkDelay (MaxSessions),
MeanPreTransmissionDelay (MaxSessions),
MeanSquaredPreTransmissionDelay (MaxSessions),
MeasuredTransmissionRate (MaxSessions, MaxLinks),
MeanDelay (MaxSessions, MaxLinks),
MeanSquaredDelay (MaxSessions, MaxLinks)

84

I I R S R LN R R U S B LS AL TR L S SR T R A
- h S ‘) ‘-\ _'(NF"J;‘(c)"'..‘ ‘,q_ . 1-“ -", 3 n".ﬂ.\“\‘f\‘ -’\ .‘\’.: R 1 ‘v RS .

A BV Y A
............

o e, 4%? .
(N WL

=
'

!

e

o 3

A

Tr
P

PR
%,

A "._"‘_i -
(Al
S

A
A,

-
x

At i)

LAA| (SRR

iy

o
‘e

dimension GenerationRate (MaxSessions)

do while (.true.)
print *, 'Enter generation rates : °’
read *, (GenerationRate (Session),
Session = 1, NumberOfSessions)
TotalGenerationRate = 0.0
do Session = 1, NumberOfSessions
TotalGenerationRate = TotalGenerationRate +
GenerationRate (Session)
end do ! Total generation rate
DistributionSum = 0.0
SessionDistribution (NumberOfSessions) = 1.0
do Session = 1, NumberOfSessions - 1
DistributionSum = DistributionSum +
GenerationRate (Session) / TotalGenerationRate
SessionDistribution (Session) = DistributionSum
end do ! Distribution function for session rates

do while (.true.)
print *, 'Enter windows : °’
read *, (Window (Session), Session = 1, NumberOfSessions)

do while (.true.)
print *, 'Enter Seed : ' ! Seed used : 314159.0
read *, Seed
InitialTime = i

do Session = 1, NumberOfSessions
NumberInProcess (Session) = 0
GenerationTimeBufferEntry (Session) = 0
NumberGenerated (Session) = 0
MinEndToEndDelay (Session) = 1.0E+9
MaxEndToEndDelay (Session) = 0.0
SumDfEndToEndDelays (Session) = 0.0
SumDfSquaredEndToEndDelays (Session) = 0.0
MinIlntraNetworkDelay (Session) = 1000000000
MaxIntraNetworkDelay (Session) = 0
SunOf IntraNetworkDelays (Session) = 0
SumOfSquaredIntraNetworkDelays (Session) = 0
MinPreTransmissiorDelay (Session) = 1.0E+9
MaxPreTransmissionDelay (Session) = 0.0
SumOfPreTransmissionDelays (Session) = 0.0
SumOfSquaredPreTransmissionDelay (Session) = 0.0
do i = 1, NumberOfLinksForSession (Session)
Link = Links (Session, i)
TransmissionTimeBufferEntry (Session, Link) = 0
NumberTransmitted (Session, Link) = 0
if (i .ge. 2) then
MinDelay (Session, Link) = 1000000000
MaxDelay (Session, Link) = O
SumDfDelays (Session, Link) = 0O
SunOf SquaredDelays (Session, Link) = 0

end if
Nt At et e < A AL LT DA YRR -*.1._"\-‘ IR NEPE SIS
Wy ‘*‘ -"-" N 'o.: . n 1N "‘ - o L

At end do
Ao end do ! Measure block initialization

o do while (.true.)
&}_ print *, 'Enter FinalTime :
e read *, FinalTime

e . ! Simulate
i call ScheduleBasedScheme (InitialTime, FinalTime)

w3 RealFinalTime = Real (FinalTime)

e do Session = 1, NumberOfSessions

o MeasuredGenerationRate (Session) =

3o Real (NumberGenerated (Session)) / RealFinalTime
RealNumberProcessed =

O Real (NumberTransmitted (Session,

U LastLink (Session)))

3 MeanEndToEndDelay (Session) =

Wae SumOfEndToEndDe lays (Session) /

'-,.;f};{ RealNumberProcessed

e MeanSquaredEndToEndDelay (Session) =

-~ SumOfSquaredEndToEndDelays (Session) /

RealNumberProcessed

MeanIntraNetworkDelay (Session) =
Real (SumOflIntraNetworkDelays (Session)) /
RealNumberProcessed
MeanSquaredIntraNetworkDelay (Session) =
Real (SumDfSquaredIntraNetworkDelays (Session)) /
RealNumberProcessed
MeanPreTransmissionDelay (Session) =

5
ol L]
s

- SunOfPreTransmissionDelays (Session) /
*i RealNumberProcessed
Al MeanSquaredPreTransmissionDelay (Session) =
. SumDfSquaredPreTransmissionDelay (Session) /
e RealNumberProcessed
N do i = 1, NumberOfLinksForSession (Session)
); Link = Links (Session, i)
A MeasuredTransmissionRate (Session, Link) =
~ Real (NumberTransmitted (Session, Link)) /
. RealFinalTime
o if (i .ge. 2) then
2R MeanDelay (Session, Link) =
N Real (SumOfDelays (Session, Link)) /
’ ﬁ RealNumberProcessed
M MeanSquaredDelay (Session, Link) =
o Real (SunmOfSquaredDelays (Session, Link)) /
*\'C" RealNumberProcessed
v ead if
o end do
‘u‘;{ end do ! Output-data computation
!
I do Session = 1, NumberOfScssions
o print *, ’'Session = ', Session
e print *, 'MeasuredGenerationRate = ',
el
o
80 86
.
b
PR b e M e e b e i e R e TR N

-

TS

R
e -

-

40

MeasuredGenerationRate (Session)
print *, 'MeanEndToEndDelay = ’,
MeanEndToEndDelay (Session)
print *, 'MeanSquaredEndToEndDelay = ',
MeanSquaredEndToEndDelay (Session)
print *, 'MinEndToEndDelay = °,
MinEndToEndDelay (Session)
print *, 'MaxEndToEndDelay = °*,
MaxEndToEndDelay (Session)
print *, 'MeanIntraNetworkDelay = ’,
MeanIntraNetworkDelay (Session)
print *, 'MeanSquaredIntraNetworkDelay = °’,
MeanSquaredIntraNetworkDelay (Session)
print *, ’MinIntraNetworkDelay = ’,
MinIntraNetworkDelay (Session)
print *, 'MaxIntraNetworkDelay = ’,
MaxIntraNetworkDelay (Session)
print *, 'MeanPreTransmissionDelay = °,
MeanPreTransmissionDelay (Session)
print *, ’'MeanSquaredPreTransmissionDelay = ',
MeanSquaredPreTransmissionDelay (Session)
print *, 'MinPreTransmissionDelay = ',
MinPreTransmissionDelay (Session)
print *, 'MaxPreTransmissionDelay = ',
MaxPreTransmissionDelay (Session)
do i = 1, NumberOfLinksForSession (Session)
Link = Links (Session, i))
print *, 'Link = *, Link
print *, 'MeasuredTransmissionRate = ',
MeasuredTransmissionRate (Session, Link)
if (i .ge. 2) then
print *, 'MeanDelay = °,
MeanDelay (Session, Link)
print *, 'MeanSquaredDelay = °’,
MeanSquaredDelay (Session, Link)
print *, 'MinDelay = ’,
MinDelay (Session, Link)
print *, 'MaxDelay = °,
MaxDelay (Session, Link)
end if
end do
end do ! Output results

print *, 'Current time = ', FinalTime
print *, 'Enter "0” to exit rum duration loop : '’
read *, Ind
if (Ind .eq. 0) go to 40
InitialTime = FinalTime + 1
end do ! Run duration loop
continue
print *, 'Enter "0" to exit seed loop : °’
read *, Ind
if (Ind .eq. 0) go to 30
end do ! Seed loop

30 continue
print *, ’Enter ”"0” to exit window loop : '’
read *, Ind
if (Ind .eq. 0) go to 20
end do ! Window loop
20 continue
print *, ’Enter "0” to exit generation rate loop : °’
read *, Ind
if (Ind .eq. 0) go to 10
end do | Generation rate loop
10 continue
stop
end
KA
o
,*\
AN
Pl
s
5 i 88
.’ f

Ly TR LN LR TRTS . 1
N Q .’ ‘ .-!\ X 1-' N 'A:

| The core of simulator SB
Subroutine ScheduleBasedScheme (InitialTime, FinalTime)

integer FinalTime

integer WrapAroundIncrement, FirstLick

include 'ParameterlS.£77' | MaxLinks, MaxSessions

include 'ParameterP.f77’ ! MaxPeriod

common / globalblock / NumberOfLinks, NumberOfSessions

integer Window

common / simulatorscheme / Window (MaxSessions)

integer Period, SessionFrame, TokenBufferLength, SessionCycle,
OutLinks

common / schemeblock / Period,
SessionFrame (MaxLinks, MaxPeriod),
TokenBufferLength (MaxSessions),
NumberOfSessionsOnLink (MaxLinks),
SessionCycle (MaxLinks, MaxPeriod),
OutLinks (MaxLinks, MaxSessions)

common / schemearrivals /
NumberOfPackets (MaxLinks, MaxSessions)

common / functionblock / NumberQOfLinksForSession (MaxSessions),
Links (MaxSessions, MaxLinks)

integer Time, Slot, RoundRobinPosition (MaxLinks), Session,
TokenBufferMarker (MaxSessions),
TokenBuffers (MaxSessions, MaxLinks + 1), Packets, Tokens,
TokenOut (MaxLinks), SessionServed (MaxLinks), Position,
OutLink

dimension NumberOfTokens (MaxLinks, MaxSessions)

save

if (InitialTime .eq. 1) then ! Initialize
Slot = 1
do Link = 1, NumberOfLinks
RoundRobinPosition (Link) = 1
end do
do Session = 1, NumberOfSessions
TokenBufferMarker (Session) = 1
do i = 1, TokenBufferLength (Session)
TokenBuffers (Session, i) = 0
end do
Link = Firstlink (Session)
Numbe rOf Packets (Link, Session) = 0
NumberOfTokens (Link, Session) = Window (Session)
do i = 2, NumberOfLinksForSession (Session)
Link = Links (Session, i)
NumberOfPackets (Link, Session) = 0
Numbe rOf Tokens (Link, Session) = 0
ead do
end do | Initializations complete
end if

do Time = InitialTime, FinalTime
do Session = 1, NumberQfSessions
Length = TokenBufferLength (Session)

89

gt) TN [e M i [aa i At i " . - - d - " - el e
.

o
O.']
W |
1 Marker = WrapAroundIncrement (TokenBufferMarker(Session),
" Length)
'J TokenBufferMarker (Session) = Marker
W if (TokenBuffers (Session, Marker) .eq. 1) then ! Token
; Link = FirstLink (Session)
k‘ NumberOfTokens (Link, Session) =
2 Numbe rOfTokens (Link, Session) + 1
S TokenBuffers (Session, Marker) = 0
end if

end do ! Real tokens return to source nodes

T do Link = 1, NumberOfLinks

Session = SessionFrame (Link, Slot)
if (Session .gt. O) then ! Session has priority to slot
Packets = NumberOfPackets (Link, Session)
if (Packets .gt. 0) then ! Session has packets waiting
% if (FirstLink (Session) .ne. Link) then ! In tranmsit
4 Tokens = NumberOfTokens (Link, Session)
if (Tokens .eq. Packets) then ! Use real token

-% Numbe rOf Tokens (Link, Session) = Tokens - 1
G TokenOut (Link) = 1

7 else ! Use fictitious token

L TokenOut (Link) = 0

kN end if

0y else | First link

?r TokenOut (Link) = 0

o end if

NumberOfPackets (Link, Session) = Packets - 1

;; SessionServed (Link) = Session
§} call Measure (Link, Session, 0.0, Time - 1)
Y go to 10
§g end if
‘ end if

NumberInCycle = NumberOfSessionsOnLink (Link)
Position = RoundRobinPosition (Link)

v 3

%} do i = 1, NumberInCycle
'&‘ Position =
L. WrapAroundIncrement (Position, NumberInCycle)

Session = SessionCycle (Link, Position)
_ Packets = NumberOfPackets (Link, Session)
- if (Packets .gt. 0) then ! Session has packets waiting

[Tokens = NumberOfTokens (Link, Session)
- if (FirstLink (Session) .ne. Link) then ! In transit
N go to 20
2 else if (Tokens .gt. O) then ! 1st link, real token
’ go to 20
T end if
[}s end if
» if (i .eq. NumberInCycle) then
et SessionServed (Link) = 0
o) go to 30
§ end if
o end do ! Round-robin loop for searching in cyclic order
;3, 20 continue ! Serve session from round-robin
'\.
e

90

oy

LN
)
[t
i"q if (Tokens .gt. 0) then ! Use real token
el NumberOfTokens (Link, Session) = Tokens - 1
T TokenOut (Link) = 1
A else ! Standard, in transit
1 TokenOut (Link) = 0
My end if
o NumberOfPackets (Link, Session) = Packets - 1
o SessionServed (Link) = Session
call Measure (Link, Session, 0.0, Time - 1)
. 30 continue
A0 RoundRobinPosition (Link) = Position
(k\ 10 continue
‘,';t-;’ end do ! Link loop ends
~3
oy ! Generate packets in current slot
. call GenerateArrivals (Time)
e
y.- do InLink = 1, NumberOfLinks
NS Session = SessionServed (InLink)
O if (Session .ne. O0) then ! Packet arrived
OutLink = OutLinks (InLink, Session)
o if (OutLink .ne. O) then ! Session in transit
N NumberOfPackets (OutLink, Session) =
57 NumberOfPackets (QutLink, Session) + 1
N if (TokenOut (InLink) .eq. 1) |
j*:-ﬁ NumberOf Tokens (OutLink, Session) = }
- Numbe rOf Tokens (OutLink, Session) + 1 |
e else ! Session exits
AL if (TokenOut (InLink) .eq. 1) ! Return real token
o TokenBuffers (Session,
ahiy TokenBufferMarker (Session)) = 1
LAy end if
-~ end if

end do ! In-link loop ends

,::.\' Slot = WrapAroundIncrement (Slot, Period) ! Next frame-slot
S35 end do ! Time loop ends
)'w- return

£L end

ot il Ra® JhaR i’ o

R ,
t'A."‘l-:"L',

Zh

R

! Generator of Poisson packets in slot for simulator SB
Subroutine GenerateArrivals (Time)

) A
..

» ta

integer Time

integer FirstLink

include ’'ParameterlLS.f77' ! MaxLinks, MaxSessions

common / globalblock / NumberOfLinks, NumberOfSessions

real*8 Ran, Seed, GenerationTime

common / arrivalblock / Seed, TotalGenerationRate,
SessionDistribution (MaxSessions)

A

o e

o common / schemearrivals /

=1 NumberOfPackets (MaxLinks, MaxSessions)
L integer Session
k-
RealTime = Real (Time - 1)~

TimeGenerated = 0.0
i do while (TimeGenerated .1t. 1.0) ! Generate next packet in slot
b TimeGenerated = TimeGenerated -
< Real (log (1.0 - Ran (Seed))) / TotalGenerationRate
b . if (TimeGenerated .gt. 1.0) go to 10 ! No more packet in slot
i RandomValue = Real %Ran (Seed))
o do Session = 1, NumberOfSessions ! Generated packet’'s session
5... if (RandomValue .le. SessionDistribution (Session)) then
" Link = FirstLink (Session)
W Numbe rOf Packets (Link, Session) =
59% NumberOfPackets (Link, Session) + 1
¥ GenerationTime = RealTime + TimeGenerated
call Measure (0, Session, GenerationTime, 0)

OBy go to 20
\1 end if
gy end do ! Session loop ends
.::. 20 continue
" end do ! Generation time loop ends
n 10 continue
Y return

1% end

¥
k) e
o
7
oY

7
b (o
N
b

>
%
2,

ke 92

! Recorder of measurements for simulator SB
Subroutine Measure (Link, Session, RealTimeMeasured,
TimeMeasured)

integer Session, TimeMeasured

real*8 RealTimeMeasured

integer WrapAroundIncrement, FirstLink

include 'ParameterLS.f77’ ! MaxLinks, MaxSessions

include 'ParameterTB.f77' ! TimeBufferLength

common / functionblock / NumberOfLinksForSession (MaxSessions),
Links (MaxSessions, MaxLinks)

integer GenerationTimeBufferEntry, TransmissionTimeBufferEntry,
TransmissionTimes, SunOfIntraNetworkDelays,
SumDfSquaredIntraNetworkDelays, SumOfDelays,
SumOf SquaredDelays

real MinEndToEndDelay, MaxEndToEndDelay,
MinPreTransmissionDelay, MaxPreTransmissionDelay

real*8 GenerationTimes

common / measureblock / NumberInProcess (MaxSessions),
GenerationTimeBufferEntry (MaxSessions),
GenerationTimes (MaxSessions, TimeBufferLength),
NumberGenerated (MaxSessions),
TransmissionTimeBufferEntry (MaxSessions, MaxLinks),
TransmissionTimes (MaxSessions, MaxLinks, TimeBufferLength),
NumberTransmitted (MaxSessions, MaxLinks),
MinEndToEndDelay (MaxSessions),
MaxEndToEndDelay (MaxSessions),
SumOfEndToEndDelays (MaxSessions),
SunDf SquaredEndToEndDelays (MaxSessions),
MinIntraNetworkDelay (MaxSessions),
MaxIntraNetworkDelay (MaxSessions),
SumOf IntraNetworkDelays (MaxSessions),
SumOf SquaredIntraNetworkDelays (MaxSessions),
MinPreTransmissionDelay (MaxSessions),
MaxPreTransmissionDelay (MaxSessions),
SunOfPreTransmissionDelays (MaxSessions),
SumOfSquaredPreTransmissionDelay (MaxSessions),
MinDelay (MaxSessions, MaxLinks),
MaxDelay (MaxSessions, MaxLinks),
SumOfDelays (MaxSessions, MaxLinks),
SunDfSquaredDelays (MaxSessions, MaxLinks)

integer Entry, Ol1dTime, Delay

real*8 GenerationTime

if (Link .eq. 0) then ! Packet generated
InProcess = NumberInProcess (Session)
if (InProcess .eq. TimeBufferLength) ther ! Overflow
stop 'Time buffer overflow occurred’
else ! Enter packet generated
Entry = WrapAroundIncrement (GenerationTimeBufferEntry
(Sessiong. TimeBufferLength)

GenerationTimeBufferEntry (Session) = Entry
GenerationTimes (Session, Entry) = RealTimeMeasured
NumberGenerated (Session) = NumberGenerated (Session) + 1

NumberInProcess (Session) = InProcess + 1
end if
else if (Link .ne. LastLink (Session)) then ! Enter transmission’

Entry = WrapAroundIncrement (TransmissionTimeBufferEntry
(Session, Link), TimeBufferLength)

TransmissionTimeBufferEntry (Session, Link) = Entry

TransmissionTimes (Session, Link, Entry) = TimeMeasured

NumberTransmitted (Session, Link) =
NumberTransmitted (Session, Link) + 1

else ! Packet transmitted on last link in path

Entry = WrapAroundIncrement (TransmissionTimeBufferEntry
(Session, Link), TimeBufferLength)

TransmissionTimeBufferEntry (Session, Link) = Entry

TransmissionTimes (Session, Link, Entry) = TimeMeasured

NumberTransmitted (Session, Link) =
NumberTransmitted (Session, Link) + 1

GenerationTime = GenerationTimes (Session, Entry)

EndToEndDelay = TimeMeasured - GenerationTime + 1.0

MinEndToEndDelay (Session) =
Min (MinEndToEndDelay (Session), EndToEndDelay)

MaxEndToEndDelay (Session) =
Max (MaxEndToEndDelay (Session), EndToEndDelay)

SumOfEndToEndDelays (Session) =
SumDfEndToEndDelays (Session) + EndToEndDelay

SumOfSquaredEndToEndDelays (Session) =
SumDfSquaredEndToEndDelays (Session) +
EndToEndDelay * EndToEndDelay

OldTime ;Transmission’l‘imes (Session, FirstLink (Session),
Entry

IntraNetworkDelay = TimeMeasured - OldTime + 1

MinIntraNetworkDelay (Session) =
Min (MinIntraNetworkDelay (Session), IntraNetworkDelay)

MaxIntraNetworkDelay (Session) =
Max (MaxIntraNetworkDelay (Session), IntraNetworkDelay)

SumDf IntraNetworkDelays (Session) =
SunOf IntraNetworkDelays (Session) + IntraNetworkDelay

SumOfSquaredIntraNetworkDelays (Session) =
SumOfSquaredIntraNetworkDelays (Session) +
IntraNetworkDelay * IntraNetworkDelay

PreTransmissionDelay =
EndToEndDelay - Real (IntraNetworkDelay)

MinPreTransmissionDelay (Session) =
Min (MinPreTransmissionDelay (Session),
PreTransmissionDelay)

MaxPreTransmissionDelay (Session) =
Max (MaxPreTransmissionDelay (Session),
PreTransmissionDelay)

SumOfPreTransmissionDelays (Session) =
SunOfPreTransmissionDelays (Session) +
PreTransmissionDelay

SumOfSquaredPreTransmissionDelay (Session) =
SumOfSquaredPreTransmissionDelay (Session) +
PreTransmissionDelay * PreTransmissionDelay

do i = 2, NumberOfLinksForSession (Session)

bl din i B B CTE TS PTWEN e P TAaAEE LT R BTN W

NewLink = Links (Session, i)
NewTime = TransmissionTimes (Session, NewlLink, Entry)
Delay = NewTime - OldTime
MinDelay (Session, NewLink) =

Min (MinDelay (Session, NewLink), Delay)
MaxDelay (Session, NewlLink) =

Max (MaxDelay (Session, NewlLink), Delay)
SumOfDelays (Session, NewlLink) =

SunDfDelays (Session, NewLink) + Delay
SumDfSquaredDelays (Session, NewLink) =

SunDfSquaredDelays (Session, NewLink) + Delay * Delay

01dTime = NewTime
end do ! Link delay loop ends
NumberInProcess (Session) = NumberInProcess (Session) - 1

end if

ret
end

urn

9s

et |

ey = b Al o WM T HENIA AT WY VLN T TN ‘x."-w‘r‘T

30
L
A
3 3 ! Functions used by both simmlators SB and FCFS
e \
A |
v Integer Function WrapAroundIncrement (Value, MaxValue)
%-t.‘ integer Value
oo if (Value .1t. MaxValue) then ! Increment
s WrapAroundIncrement = Value + 1
v else if (Value .eq. MaxValue) then ! Wrap around
e WrapAroundIncrement = 1
,ﬁ else ! Error |
H_-)-} WrapAroundIincrement = Value
e stop 'Invalid argument to WrapAroundIncrement’
ol end if
- return
end
N
|t '
$ Integer Function FirstLink (Session)
integer Session
- include 'ParameterLS.f77’ ! MaxLinks, MaxSessions
* common / functionblock / NumberOfLinksForSession (MaxSessions),
N Links (MaxSessions, MaxLinks)
‘.\‘
e FirstLink = Links (Session, 1)
‘ return
end
3g Integer Function LastLink (Session)
N
s integer Session
include ’'ParameterlS.f77' ! MaxLinks, MaxSessions
ol common / functionblock / NumberOfLinksForSession (MaxSessions),
A Links (MaxSessions, MaxLinks)
LastLink = Links (Session, NumberOfLinksForSession (Session))
v} return
end

furs 96

! Generator of uniform random numbers in [0,1),
! used by both simulators SB and FCFS
Real*8 Function Ran (Seed)

real*8 Seed, Combination, Modulus
real Multiplier

parameter (Modulus = 4294967296.0, Multiplier = 69069.0,
Constant = 1.0)

Combination = Multiplier * Seed + Constant
if (Combination .gt. Modulus) then
Seed = mod (Combination, Modulus)
else if (Combination .1t. Modulus) then
Seed = Combination

else
Seed = 0.0
end if
Ran = Seed / Modulus
return

end

P 7 ¢

o A

) ;ﬁ_\r"’ ol

~evam .
N -3, A
. '.'.':"l [

o P
-

,4
g
=

e 2
e & 8 A A&

- -
¥ -0’._., A 3

! |‘ A a‘/ ¥
N ST

! Data used by simulator SB for network of Figure 4.1
Block Data Network

include 'ParameterLS.f77' ! MaxLinks, MaxSessions

include "ParameterP.f77° | MaxPeriod

cammon / globalblock / NumberOfLinks, NumberOfSessions

integer Period, SessionFrame, TokenBufferLength, SessionCycle,
OutLinks

common / schemeblock / Period,
SessionFrame (MaxLinks, MaxPeriod),
TokenBufferLength (MaxSessions),
Numbe rOf SessionsOnLink (MaxLinks),
SessionCycle (MaxLinks, MaxPeriod),
OutLinks (MaxLinks, MaxSessions)

common / functionblock / NumberOfLinksForSession (MaxSessions),
Links (MaxSessions, MaxLinks)

data NumberOfLinks, NumberOfSessions / 2, 3 /

data Period / 2 /, SessionFrame (1,1) / 1 /,
SessionFrame (1,2) / 2 /, SessionFrame (2,1) / 1 /,
SessionFrame (2,2) / 3 /

data NumberOfSessionsOnLink (1) 7/ 2 /,
NumberOf SessionsOnLink (2) / 2 /

data SessionCycle (1,1) / 1 /, SessionCycle (1,2) /7 2 /,
SessionCycle (2,1) / 1 /, SessionCycle (2,2) /7 3 /

data OutLinks (1,1) / 2 /, OutLinks (1,2) /7 0 /
OutLinks (2,1) /7 0 /, OutLinks (2,3) /7 0 /

data NumberOfLinksForSession (1) /7 2 /,
NumberOfLinksForSession (2) / 1 /,
NumberOf LinksForSession (3) /7 1 /

data Links (1,1) / 1 /, Links (1,2) /7 2 /, Links (2,1) 7 1/,
Links (3,1) 7 2 /

data TokenBufferLength (1) / 3 /, TokenBufferLength (2) / 2 /,
TokenBufferLength (3) /7 2 /

end

98

W T WY WY R v w Wl Lae el ek Aadd TR MV TR [TAR AN LA LRSS N T ST - = 7T T T SRR AR R e

P !‘Q

e

4 l

:::‘:: Program SimulatorFCFS ! Main program for simulator FCFS

K

v integer FirstLink, LastLink

e include 'ParameterLS.£77' ! MaxLinks, MaxSessions

"‘:} include 'ParameterTB.f77° ! TimeBufferLength

‘i‘ common / globalblock / NumberGfLinks, NumberOfSessions

z t integer Window, FinalTime

\ : common / simulatorscheme / Window (MaxSessions)

had common / functionblock / NumberOfLinksForSession (MaxSessions),
- Links (MaxSessions, MaxLinks)

:E real*8 Seed

i common / arrivalblock / Seed, TotalGenerationRate,

A0 SessionDistribution (MaxSessions)

}. integer GenerationTimeBufferEntry, WindowingTimeBufferEntry,

TransmissionTimeBufferEntry, TransmissionTimes,
SumOf IntraNetworkDelays, SumOfSquaredIntraNetworkDelays,

J:- SumDfDelays, SumOfSquaredDelays
A real MinEndToEndDelay, MaxEndToEndDelay, MinIntraWindowDelay,
A MaxIntraWindowDelay, MinPreWindowDelay, MaxPreWindowDe lay,
AN MinPreTransmissionDelay, MaxPreTransmissionDelay,
> MinWindowToNetDelay, MaxWindowToNetDelay
. real®*8 GenerationTimes, WindowingTimes
DN common / measureblock / NumberInProcess (MaxSessions),
Pt GenerationTimeBufferEntry (MaxSessions),
3 GenerationTimes (MaxSessions, TimeBufferLength),
,}f‘»‘\- NumberGenerated (MaxSessions),
u WindowingTimeBufferEntry (MaxSessions),
WindowingTimes (MaxSessions, TimeBufferLength),
ot Numbe rWindowed (MaxSessions), '
25 TransmissionTimeBufferEntry (MaxSessions, MaxLinks),
L TransmissionTimes (MaxSessions, MaxLinks, TimeBufferLength),
o NumberTransmitted (MaxSessions, MaxLinks),
N MinEndToEndDelay (MaxSessions),
MaxEndToEndDelay (MaxSessions),
W SumOfEndToEndDelays (MaxSessions),
) SumOf SquaredEndToEndDelays (MaxSessions),
2 MinIntraWindowDelay (MaxSessions),
A58 MaxIntraWindowDelay (MaxSessions),
W SunOf IntraWindowDe lays (MaxSessions),
SumOfSquaredIntraWindowDelays (MaxSessions),
o MinPreWindowDelay (MaxSessions),
e MaxPreWindowDelay (MaxSessions),
o SumOfPreWindowDe lays (MaxSessions),
Ot SumOfSquaredPreWindowDelays (MaxSessions),
o MinIntraNetworkDelay (MaxSessions),
MaxIntraNetworkDelay (MaxSessions),
¢ SumOf IntraNetworkDelays (MaxSessions),
.,:::. SumOfSquaredIntraNetworkDe lays (MaxSessions),
o MinPreTransmissionDelay (MaxSessions),
Y

MaxPreTransmissionDelay (MaxSessions),
() SumOfPreTransmissionDelays (MaxSessions),
SunOfSquaredPreTransmissionDelay (MaxSessions),
MinWindowToNetDelay (MaxSessions),
MaxWindowToNetDelay (MaxSessions),

99

ul*.
ol
o
i

e

¥| e

SumOfWindowToNetDelays (MaxSessions),
SumOfSquaredWindowToNetDelays (MaxSessions),
MinDelay (MaxSessions, MaxLinks),

MaxDelay (MaxSessions, MaxLinks),

.
e l - - >

=

oo SumDfDelays (MaxSessions, MaxLinks),
X SumOfSquaredDelays (MaxSessions, MaxLinks)
oy integer Session
A real MeasuredGenerationRate (MaxSessions),
i MeasuredWindowingRate (MaxSessions),
MeanEndToEndDelay (MaxSessions),
e MeanSquaredEndToEndDelay (MaxSessions),
’;{: MeanIntraWindowDelay (MaxSessions),
Y MeanSquaredIntraWindowDelay (MaxSessions),
Awy MeanPreWindowDe lay (MaxSessions),
A\ MeanSquaredPreWindowDelay (MaxSessions),
MeanIntraNetworkDelay (MaxSessions),
s MeanSquaredIntraNetworkDelay (MaxSessions),
- MeanPreTransmissionDelay (MaxSessions),
T}:{. MeanSquaredPreTransmissionDelay (MaxSessions),
R MeanWindowToNe tDelay (MaxSessions),
) MeanSquaredWindowToNetDelay (MaxSessions),
= MeasuredTransmissionRate (MaxSessions, MaxLinks),
v MeanDelay (MaxSessions, MaxLinks),
pT22 MeanSquaredDelay (MaxSessions, MaxLinks)
R 3 dimension GenerationRate (MaxSessions)
%)
oen do while (.true.)
' print *, 'Enter generation rates : '
e read *, (GenerationRate (Session),
.{_{2 Session = 1, NumberOfSessions)
Q& TotalGenerationRate = 0.0
1}7 do Session = 1, NumberOfSessions
S35 TotalGenerationRate = TotalGenerationRate +
__ GenerationRate (Session)
o end do ! Total generation rate
Y DistributionSum = 0.0
L SessionDistribution (NumberOfSessions) = 1.0
X do Session = 1, NumberOfSessions - 1
) DistributionSum = DistributionSum +

GenerationRate (Session) / TotalGenerationRate
SessionDistribution (Session) = DistributionSum

'f::',; end do ! Distribution function for session rates

- do while (.true.)

- print *, 'Enter windows : °

IR read *, (Window (Session), Session = 1, NumberOfSessions)
;:': do while (.true.)

‘i print *, ’Enter Seed : ' | Seed used : 314159.0
o read *, Seed

o InitialTime = 1

g

- do Session = 1, NumberOfSessions

o NumberInProcess (Session) = 0

A

1

1 é 100

GenerationTimeBufferEntry (Session) = 0
NumberGenerated (Session) = O
WindowingTimeBufferEntry (Session) = 0
Numbe tWindowed (Session) = 0
MinEndToEndDelay (Session) = 1.0E+9
MaxEndToEndDelay (Session) = 0.0
SumOfEndToEndDelays (Session) = 0.0
SumDf SquaredEndToEndDelays (Session) = 0.0
MinlntraWindowDelay (Session) = 1.0E+9
MaxIntraWindowDelay (Session) = 0.0
SunOf IntraWindowDe lays (Session) = 0.0
SumDfSquaredIntraWindowDelays (Session) = 0.0
MinPreWindowDelay (Session) = 1.0E+9
MaxPreWindowDelay (Session) = 0.0
SumOfPreWindowDelays (Session) = 0.0
SumOfSquaredPreWindowDe lays (Session) = 0.0
MinIntraNetworkDelay (Session) = 1000000000
MaxIntraNetworkDelay (Session) = 0
SumOf IntraNetworkDelays (Session) = 0
SumDfSquaredIntraNetworkDelays (Session) = 0
MinPreTransmissionDelay (Session) = 1.0E+9
MaxPreTransmissionDelay (Session) = 0.0
SunOfPreTransmissionDelays (Session) = 0.0
SumDfSquaredPreTransmissionDelay (Session) = 0.0
MinWindowToNetDelay (Session) = 1.0E+9
MaxWindowToNetDelay (Session) = 0.0
SumOfWindowToNetDelays (Session) = 0.0
SumDf SquaredWindowToNetDelays (Session) = 0.0
do i = 1, NumberOfLinksForSession (Session)
Link = Links (Session, i)
TransmissionTimeBufferEntry (Session, Link) = 0
NumberTransmitted (Session, Link) = O
if (i .ge. 2) then
MinDelay (Session, Link) = 1000000000
MaxDelay (Session, Link) = 0
SumOfDelays (Session, Link) = 0
SumDfSquaredDelays (Session, Link) = 0
end if
end do
end do ! Measure block initialization

do while (.true.)
print *, ’Enter FinalTime : °
read *, FinalTime

call FCFSScheme (InitialTime, FinalTime) ! Simulate

RealFinalTime = Real (FinalTime)
do Session = 1, NumberOfSessions
MeasuredGenerationRate (Session) =
Real (NumberGenerated (Session)) / RealFinalTime
MeasuredWindowingRate (Session) =
Real (NumberWindowed (Session)) / RealFinalTime
RealNumberProcessed =

NN

~

AT

101

il .
g2
A\ R\
YR
3 -_?
\}.4 Real (NumberTransmitted (Session,
LastLink (Session)))
Aty - MeanEndToEndDelay (Session) =
. _ SumOfEndToEndDelays (Session) /
11"3 RealNumberProcessed
o MeanSquaredEndToEndDelay (Session) =
P4 SumDf SquaredEndToEndDelays (Session) /
:E;- RealNumberProcessed
e MeanIntraWindowDelay (Session) =
SumOf IntraWindowDe lays (Session) /
- RealNumberProcessed
o MeanSquaredIntraWindowDelay (Session) =
s SumOf SquaredIntraWindowDelays (Session) /
"{4‘.: RealNumberProcessed
YRE MeanPreWindowDelay (Session) =
SumOfPreWindowDelays (Session) /
e RealNumberProcessed
e MeanSquaredPreWindowDelay (Session) =
,:%;‘ SunOfSquaredPreWindowDelays (Session) /
1A% RealNumberProcessed
MeanIntraNetworkDelay (Session) =
- Real (SumOfIntraNetworkDelays (Session)) /
A RealNumberProcessed
N MeanSquaredIntraNetworkDelay (Session) =
\“_fﬁ Real (SumDfSquaredIntraNetworkDelays (Session)) /
:;-.‘4} RealNumberProcessed
&R MeanPreTransmissionDelay (Session) =
SumDfPreTransmissionDelays (Session) /
RN RealNumberProcessed
2;}_:} MeanSquaredPreTransmissionDelay (Session) =
-y SumOfSquaredPreTransmissionDelay (Session) /
X RealNumberProcessed
:!‘. MeanWindowToNetDelay (Session) =
: SumOfWindowToNetDelays (Session) /
P RealNumberProcessed
oy MeanSquaredWindowToNetDelay (Session) =
s SumOf SquaredWindowToNetDelays (Session) /
i RealNumberProcessed
5 do i = 1, NumberOfLinksForSession (Session)
Link = Links (Session, i)
- MeasuredTransmissionRate (Session, Link) =
Real (NumberTransmitted (Session, Link)) /
ciel RealFinalTime
N if (i .ge. 2) then
ot MeanDelay (Session, Link) =
Real (SumOfDelays (Session, Link)) /
R ReaINumberProcessed
o MeanSquaredDelay (Session, Link) =
'f\;- Real (SumODfSquaredDelays (Session, Link)) /
ey RealNumberProcessed
N end if
end do
T end do | Output-data computation
e
N
".',,::' 102
S

A M R T i A A BT o A T
" \ Q.Q.Q‘:"b.-’. ..0' .u). l -""-" =T S "‘ X .0), N \J‘) C

Y T T R hac At s~ 4
T W W W N Y T WTTERETTrYYY T T U Ty WYY PERCTONTIN

! do Session = 1, NumberOfSessions
print *, °'Session = ’, Session
print *, 'MeasuredGenerationRate = °’,

e MeasuredGenerationRate (Session)
-: print *, 'MeasuredWindowingRate = °’,
Al MeasuredWindowingRate (Session)
o print *, 'MeanEndToEndDelay = ’,
MeanEndToEndDelay (Session)

print *, 'MeanSquaredEndToEndDelay = °,
MeanSquaredEndToEndDelay (Session)

::;': print *, 'MinEndToEndDelay = ',
MinEndToEndDelay (Session)

Y print *, 'MaxEndToEndDelay = ’,

S MaxEndToEndDelay (Session)

print *, 'MeanIntraWindowDelay = ’,
MeanIntraWindowDe lay (Session)

N print *, 'MeanSquaredIntraWindowDelay = ’,
o MeanSquaredIntraWindowDelay (Session)
Lo print *, 'MinIntraWindowDelay = ',

o MinIntraWindowDelay (Sessica)

print *, 'MaxIntraWindowDelay = °’,
MaxIntraWindowDelay (Session)
print *, 'MeanPreWindowDelay = °,

= MeanPreWindowDelay (Session)
A print *, 'MeanSquaredPieWindowDelay = ’,
oo MeanSquaredPreWindowDelay (Session)

print *, 'MinPreWindowDelay = ',
MinPreWindowDelay (Session)

3 print *, 'MaxPreWindowDelay = °’,

7 MaxPreWindowDelay (Session)

AN print *, 'MeanIntraNetworkDelay = °,

1. MeanIntraNetworkDelay (Session)

print *, 'MeanSquaredIntraNetworkDelay = ’,

MeanSquaredIntraNetworkDelay (Session)

A4 print *, 'MinlntraNetworkDelay = ',
N MinIntraNetworkDelay (Session)

ot print *, 'MaxIntraNetworkDelay = ',
o MaxIntraNetworkDelay (Session)

b print *, 'MeanPreTransmissionDelay = °,

MeanPreTransmissionDelay (Session)

M print *, 'MeanSquaredPreTransmissionDelay = °’,
:;-.':_‘ MeanSquaredPreTransmissionDelay (Session)
print *, 'MinPreTransmissionDelay = °’,

3 MinPreTransmissionDelay (Session)

T print *, 'MaxPreTransmissionDelay = ’,

i MaxPreTransmissionDelay (Session)

3~ print *, 'MeanWindowToNetDelay = ',

he MeanWindowToNetDelay (Session)

- print *, 'MeanSquaredWindowToNetDelay = ',
N MeanSquaredWindowToNetDelay (Session)

(e print *, 'MinWindowTIoNetDelay = °,

T MinWindowToNetDelay (Session)

,;\.'. print *, 'MaxWindowToNetDelay = ',

e MaxWindowToNetDelay (Session)

"

\

(LS

‘ 103

do i = 1, NumberOfLinksForSession (Session)
Link = Links (Session, i)
print *, 'Link = ', Link
print *, 'MeasuredTransmissionRate = ’,
' MeasuredTransmissionRate (Session, Link)
if (i .ge. 2) then
print *, 'MeanDelay = °’,
MeanDelay (Session, Link)
print *, 'MeanSquaredDelay = °’,
MeanSquaredDelay (Session, Link)
print *, 'MinDelay = ’,
MinDelay (Session, Link)
print *, 'MaxDelay = °’,
MaxDelay (Session, Link)
end if
end do
end do ! Output results

print *, 'Current time = ', FinalTime
print *, ’Enter "0” to exit run duration loop : '’
read *, Ind
if (Ind .eq. 0) go to 40
InitialTime = FinalTime + 1
end do ! Run duration loop
40 continue
print *, ’Enter "0” to exit seed loop : °’
read *, Ind
if (Ind .eq. 0) go to 30
end do ! Seed loop
30 continue
print *, ’Enter "0” to exit window loop : °’
read *, Ind
if (Ind .eq. 0) go to 20
end do | Window loop
20 continue
print *, 'Enter "0” to exit generation rate loop : °’
read *, Ind
if (Ind .eq. 0) go to 10
end do ! Generation rate loop
10 continue
stop : -
end

7
n

4y
S

AR
Sy

104

. e =

iRt ek 2 i Aulb il St ath St el ah i A K S -t Ao B G B b Sl i 8 SN A & - S RCEMAR S Sl A it i S B S A" e Iacrt il A i AR T A L

Bt
_’
.{_\:f
i
AR
%-\.{‘T, ! The core of simulator FCFS
. Subroutine FCFSScheme (InitialTime, FinalTime)
{
integer FinalTime
e integer WrapAroundIncrement, FirstLink
b1 include ’ParameterlS.f77’ ! MaxLinks, MaxSessions
\’3 common / globalblock / NumberOfLinks, NumberOfSessions
ft - integer Window
common / simulatorscheme / Window (MaxSessions)
RS integer TokenBufferLength, OutLinks
. 2y common / schemeblock / TokenBufferLength (MaxSessions),
AL Outlinks (MaxLinks, MaxSessions)
0 common / schemearrivals /
NumberOfPacketsAtSource (MaxSessions),
Numbe rOf Tokens (MaxSessions)
common / functionblock / NumberOfLinksForSession (MaxSessions),
Py Links (MaxSessions, MaxLinks)
7o include 'ParameterLB.f77’ | LinkBufferLength
KR integer QueueHead, QueueTail
o common / queueblock / LinkQueue (MaxLinks, LinkBufferLength),
QueueHead (MaxLinks), QueueTail (MaxLinks),
R NumberOfPackets (MaxLinks)
A integer Time, Session, TokenBufferMarker (MaxSessions),
A TokenBuffers (MaxSessions, MaxLinks + 1), Packets,
Tl SessionServed (MaxLinks), QutLink
[real*8 RealTime
‘ save
-1 if (InitialTime .eq. 1) then ! Initialize
"{?_3;. do Session = 1, NumberOfSessions
R TokenBufferMarker (Session) = 1
g do i = 1, TokenBufferLength (Session)
i TokenBuffers (Session, i) = 0
“lgta end do
22 NumberOfPacketsAtSource (Session) = 0
oo NumberOfTokens (Session) = Window (Session)
R end do
b do Link = 1, NumberOfLinks
e NumberOfPackets (Link) = 0
CRYy QueueHead (Link) = 0
e QueueTail (Link) = 0
i end do ! Initializations complete
o end if
o>
= do Time = [nitialTime, FinalTime
L RealTime = Time - 1
F e do Session = 1, NumberOfSessions
[- Length = TokenBufferLength (Session)
b Marker -V)VrapAroundIncrement (TokenBufferMarker(Session),
Length
— TokenBufferMarker (Session) = Mirker
e if (TokenBuffers (Session, Marker) .eq. 1) then ! Token
":::';jf: Packets = NumberOfPacketsAtSource (Session)
fhow
r2 AL
. ' 105
.
o
oy

IR LW S Tt S Pl P A T Ry SR g U I A gy -..",.. O R AT e A
AR A A R O W W) PP AT MRV AP S Y N T R S T SRS

WR W T ReEy TR R RS WE W w W T WS @ wm"‘"

if (Packets .gt. 0) then ! Use token to enter packet
call Enqueue (FirstLink (Session), Session)
call Measure (-1, Session, RealTime, 0)
Numbe rOf PacketsAtSource (Session) = Packets - 1

else ! Store token
Numbe rOf Tokens (Session) =

NumberOfTokens (Session) + 1
end if
TokenBuffers (Session, Marker) = 0
end if
end do ! Window-tokens return to source nodes

do Link = 1, NumberOfLinks
call Dequeue (Link, Session)
SessionServed (Link) = Session
if (Session .ne. 0)
call Measure (Link, Session, 0.0, Time - 1)
end do ! Link loop ends

! Generate packets in current slot
call GenerateArrivals (Time)

do InLink = 1, NumberOfLinks
Session = SessionServed (InLink)
if (Session .ne. 0) then ! Packet arrived
OutLink = OutLinks (InLink, Session)
if (OutLink .ne. O) then ! Session in transit
call Enqueue (QutLink, Session)
else ! Session exits, return window-token
TokenBuffers (Session,
TokenBufferMarker (Session)) = 1
end if
end if
end do ! In-link loop ends

end do ! Time loop ends
return
end

;)'.
-,

.}'

377
o

»a
o

106

SR

Byl 3&. NS ANy (™ ¢ T N N AT R R TN FR NS SY IR 3G)
' ."LJ_ N ’1:\!\(!:!\.‘“!&. ‘j.l’;\[h\n(~5 e 23 I N M Wt AR ALY Sy Sa, -"l\. " ._1 NSALSS

W3 o T I\

I'
A

il
2 | Generator of Poisson packets in slot for simulator FCFS
ot Subroutine GenerateArrivals (Time)

\ integer Time

L integer FirstLink

ﬂ’ include 'ParameterLS.f77' ! MaxLinks, MaxSessions

common / globalblock / NumberOfLinks, NumberOfSessions

\k real*8 Ran, Seed, GenerationTime

ke common / arrivalblock / Seed, TotalGenerationRate,

e SessionDistribution (MaxSessions)

o common / schemearrivals /

et Numbe rOf Packe tsAtSource (MaxSessions),

oy Numbe rOf Tokens (MaxSessions)

o integer Session, Tokens

. RealTime = Real (Time - 1)

- TimeGenerated = 0.0

ﬁ do while (TimeGenerated .1t. 1.0) ! Generate next packet in slot
ol TimeGenerated = TimeGenerated -

Y Real (log (1.0 - Ran (Seed))) / TotalGenerationRate

e if (TimeGenerated .gt. 1.0) go to 10 ! No more packet in slot

. RandonValue = Real 5Ran (Seed))

e do Session = 1, NumberOfSessions ! Generated packet's session
e if (RandomValue .le. SessionDistribution (Session)) then
N GenerationTime = RealTime + TimeGenerated
“ call Measure (0O, Session, GenerationTime, 0)

" Tokens = NumberOfTokens (Session)

) if (Tokens .gt. O) then ! Use token to enter packet
, call Enqueue (FirstLink (Session), Sessiong
oL call Measure (-1, Session, GenerationTime, 0)
(e NumberOfTokens (Session) = Tokens - 1
M else ! Store packet at source
R Numbe rOf Packe tsAtSource (Session) =

NumberOfPacketsAtSource (Session) + 1

P end if
tyd go to 20
b end if
!% end do | Session loop ends
W 20 continue

end do ! Generation time loop ends
! 10 continue
o return
end
i

Ve
Ry
[¥4
2
iy
N
a\

I8
&_.
"‘.’
00N 107

r 5

: ‘ - T T S G A IS MV OIS IRy] A0 n K &
gl R Y ‘~"'~, a‘)m i ",l:‘. SIS A A RS »3.‘;,!%40. EREALAN T WY ‘A’r'a‘z.a'a%‘!‘\k‘:*.'ol"{ J'J!'ﬂ‘"ik‘ll WU vt"

UK DG

haaddh sad aos AL s Aol A Aol sl hacdien e 2 o e T WmoevEwe e e

! Recorder of measurements for simulator FCFS
Subroutine Measure (Link, Session, RealTimeMeasured,
TimeMeasured)

integer Session, TimeMeasured

real*8 RealTimeMeasured

integer WrapAroundIncrement, FirstLink

include 'ParameterLS.f77" | MaxLinks, MaxSessions

include 'ParameterTB.f77° | TimeBufferLength

common / functionblock / NumberOfLinksForSession (MaxSessions),
Links (MaxSessions, MaxLinks)

integer GenerationTimeBufferEntry, WindowingTimeBufferEntry,
TransmissionTimeBufferEntry, TransmissionTimes,
SumOf IntraNetworkDelays, SumOfSquaredIntraNetworkDelays,
SumOfDelays, SumDfSquaredDelays

real MinEndToEndDelay, MaxEndToEndDelay, MinIntraWindowDelay,
MaxIntraWindowDelay, MinPreWindowDelay, MaxPreWindowDelay,
MinPreTransmissionDelay, MaxPreTransmissionDelay
MinWindowToNetDelay, MaxWindowToNetDelay '

real*8 GenerationTimes, WindowingTimes

common / measureblock / NumberInProcess (MaxSessions),
GenerationTimeBufferEntry (MaxSessions),
GenerationTimes (MaxSessions, TimeBufferLength),
NumberGenerated (MaxSessions),
WindowingTimeBufferEntry (MaxSessions),
WindowingTimes (MaxSessions, TimeBufferLength),
Numbe rWindowed (MaxSessions),
TransmissionTimeBufferEntry (MaxSessions, MaxLinks),
TransmissionTimes (MaxSessions, MaxLinks, TimeBufferLength),
NumberTransmitted (MaxSessions, MaxLinks),
MinEndToEndDelay (MaxSessions),
MaxEndToEndDelay (MaxSessions),
SumDfEndToEndDelays (MaxSessions),
SunOfSquaredEndToEndDelays (MaxSessions),
MinIntraWindowDelay (MaxSessions),
MaxIntraWindowDelay (MaxSessions),
SumDf IntraWindowDelays (MaxSessions),
SumOfSquaredIntraWindowDe lays (MaxSessions),
MinPreWindowDelay (MaxSessions),
MaxPreWindowDelay (MaxSessions),
SumOfPreWindowDe lays (MaxSessions), -
SunOfSquaredPreWindowDelays (MaxSessions),
MinIntraNetworkDelay (MaxSessions),
MaxIntraNetworkDelay (MaxSessions),
SumOf IntraNetworkDelays (MaxSessions),
SunOf SquaredIntraNetworkDelays (MaxSessions),

A5 MinPreTransmissionDelay (MaxSessions),

7528 MaxPreTransmissionDelay (MaxSessions),

o SumOfPreTransmissionDelays (MaxSessions),

-r" SumDfSquaredPreTransmissionDelay (MaxSessions),

i MioWindowToNetDelay (MaxSessions),
MaxWindowToNetDelay (MaxSessions),

s SumOfWindowToNetDelays (MaxSessions),

209] SumDf SquaredWindowToNetDelays (MaxSessions),

4

X:

W) 108

o

2. Vs

.»:.“.:-".\,' ~3e L

Lkab M \J
2 Madadp e tg

- “ ‘=1 AIURA Ly AL CACRERACE R AL SR DR AT L DA TATREN ERLICE R
s a',"z'l‘f ' RPN 1 ot 4 LAy g L

-
¥ 4. %0

(Sl

W TN TR T O T oY, - o bRl el el ek 4 bk dak Ras d WErFTETwTIYTwTwYwweLTw

MinDelay (MaxSessions, MaxLinks),
MaxDelay (MaxSessions, MaxLinks),
SumDfDelays (MaxSessions, MaxLinks),
SumOfSquaredDelays (MaxSessions, MaxLinks)

integer Entry, OldTime, Delay

real*8 GenerationTime, WindowingTime

real IntraWindowDelay

if (Link .eq. 0) then ! Packet generated
InProcess = NumberInProcess (Session)
if (InProcess .eq. TimeBufferLength) then ! Overflow
stop 'Time buffer overflow occurred’
else ! Enter packet generated
Entry = WragAroundIncrement (GenerationTimeBufferEntry
(Session), TimeBufferLength)
GenerationTimeBufferEntry (Session) = Entry
GenerationTimes (Session, Entry) = RealTimeMeasured
NumberGenerated (Session) = NumberGenerated (Session) + 1
NumberInProcess (Session) = InProcess + 1
end if
else if (Link .eq. -1) then ! Packet entered window
Entry = Wragm-oundlncrement (WindowingTimeBufferEntry
(Session), TimeBufferLeagth)
WindowingTimeBufferEntry (Session) = Entry
WindowingTimes (Session, Entry) = RealTimeMeasured
Numbe rfWindowed (Session) = NumberWindowed (Session) + 1
else if (Link .ne. LastLink (Session)) then ! Enter transmission
Entry = WrapAroundIncrement (TransmissionTimeBufferEntry
(Session, Link), TimeBufferLength)
TransmissionTimeBufferEntry (Session, Link) = Entry
TransmissionTimes (Session, Link, Entry) = TimeMeasured
NumberTransmitted (Session, Link) =
NumberTransmitted (Session, Link) + 1
else ! Packet transmitted on last link in path
Entry = WrapAroundIncrement (TransmissionTimeBufferEntry
(Session, Link), TimeBufferLength)
TransmissionTimeBufferEntry (Session, Link) = Eatry
TransmissionTimes (Session, Link, Entry) = TimeMeasured
NumberTransmitted (Session, Link) =
NumberTransmitted (Session, Link) + 1
GenerationTime = GenerationTimes (Session, Entry)
EndToEndDelay = TimeMeasured - GenerationTime + 1.0
MinEndToEndDelay (Session) =
Min (MinEandToEndDelay (Session), EndToEndDelay)
MaxEndToEndDelay (Session) =
Max (MaxEndToEndDelay (Session), EndToEndDelay)
SumOfEndToEndDelays (Session) =
SunOfEndToEndDelays (Session) + EndToEndDelay
SumDfSquaredEndToEndDelays (Session) =
SumOfSquaredEndToEndDelays (Session) +
EndToEndDelay * EndToEndDelay
WindowingTime = WindowingTimes (Session, Entry)
IntraWindowDelay = TimeMeasured - WindowingTime + 1.0
MinlatraWindowDelay (Session) =

2555
T

e

‘C ~ ‘J
TY N

-

Min (MinIntraWindowDelay (Session), IntraWindowDelay)
MaxIntraWindowDelay (Session) =

Max (MaxIntraWindowDelay (Session), IntraWindowDelay)
SunOf IntraWindowDe lays (Session) =

£

:r! SunOf IntraWindowDelays (Session) + IntraWindowDelay
by SumDfSquaredIntraWindowDelays (Session) = |
""\. SumOfSquaredIntraWindowDelays (Session) + 1
oy IntraWindowDelay * IntraWindowDelay ‘
el PreWindowDelay = EndToEndDelay - IntraWindowDelay ‘
. MinPreWindowDelay (Session) = |
t;’l:o Min (MinPreWindowDelay (Session), PreWindowDelay) |
:':’.:: MaxPreWindowDe lay (Session) =.
e Max (MaxPreWindowDelay (Session), PreWindowDelay)
J"&' SumOfPreWindowDe lays (Session) =
hed SumDfPreWindowDelays (Session) + PreWindowDelay
SumDfSquaredPreWindowDelays (Session) =
o= SumDfSquaredPreWindowDelays (Session) +
i PreWindowDelay * PreWindowDelay
465 OldTime = TransmissionTimes (Session, FirstLink (Session),
\:;) Entry)
b, IntraNetworkDelay = TimeMeasured - OldTime + 1
_— MinIntraNetworkDelay (Session) =
Min (MinIntraNetworkDelay (Session), IntraNetworkDelay)
o MaxIntraNetworkDelay (Session) =
SO Max (MaxIntraNetworkDelay (Session), IntraNetworkDelay)
R SumOf IntraNetworkDelays (Session) =
SunOf IntraNetworkDelays (Session) + IntraNetworkDelay
_ SunDfSquaredIntraNetworkDelays (Session) =
P SumOf SquaredIntraNetworkDelays (Session) +
e IntraNetworkDelay * IntraNetworkDelay
j "r}j PreTransmissionDelay =
7} EndToEndDelay - Real (IntraNetworkDelay)
, MinPreTransmissionDelay (Session) =
Min (MinPreTransmissionDelay (Session),
st¢ PreTransmissionDelay)
‘g':-)' MaxPreTransmissionDelay (Session) =
B Max (MaxPreTransmissionDelay (Session),
;t PreTransmissionDelay)
i SumDfPreTransmissionDelays (Session) =
SunOfPreTransmissionDelays (Session) +
oY PreTransmissionDelay
2o SunOfSquaredPreTransmissionDelay (Session) =
,.'_;, SumDfSquaredPreTransmissionDelay (Session) +
';::t} PreTransmissionDelay * PreTransmissionDelay
e WindowToNetDelay = IntraWindowDelay -
Real (IntraNetworkDelay)
e MinWindowToNetDelay (Session) =
N3y Min (MinWindowToNetDelay (Session),
) WindowToNetDelay)
h MaxWindowToNetDelay (Session) =
N Max (MaxWindowToNetDelay (Session),
WindowToNetDelay)
o SumDfWindowToNetDelays (Session) =
:;:, SumDfWindowToNetDelays (Session) +
J .l .

s 110

- s g > o - o

¥ -
ey

| ERSSSRas

SRR ERE

A

7

- s e g a -

|

.
~

WP YA Y
4"::"0-
e -

-
- s
- |
-

<y

e

s B X

haibadidad oad oAl 2ol od TR wTre Y T W Wi W W w T C—

WindowToNetDelay
SumOfSquaredWindowToNetDelays (Session) =
SunOf SquaredWindowToNe tDelays (Session) +
WindowToNetDelay * WindowToNetDelay
do i = 2, NumberOfLinksForSession (Session)
NewLink = Links (Session, i)
NewTime = TransmissionTimes (Session, NewlLink, Entry)
Delay = NewTime - OldTime
MipDelay (Session, NewLink) =
Min (MinDelay (Session, NewLink), Delay)
MaxDelay (Session, NewlLink) =
Max (MaxDelay (Session, NewlLink), Delay)
SunOfDelays (Session, NewLink) =
SunmDfDelays (Session, NewLink) + Delay
SumOf SquaredDelays (Session, NewLink) =
SumDfSquaredDelays (Session, NewLink) + Delay * Delay
O1dTime = NewTime
end do ! Link delay loop ends
NumberInProcess (Session) = NumberInProcess (Session) - 1
end if
return
end

111

[RS I T N

. Iy RN . TR TR LSRR RSN
Iy e MM 2N y ¥ . x <

! Enqueues packet in link-queue in simulator FCFS
Subroutine Enqueue (Link, Session) \
integer Session
integer WrapAroundIncrement \
include ’'ParameterLS.f77’ ! MaxLinks, MaxSessions
include 'ParameterlLB.f77° | LinkBufferLength \
integer QueueHead, QueueTail
common / queueblock / LinkQueue (MaxLinks, LinkBufferLength),

QueueHead (MaxLinks), QueueTail (MaxLinks),

NumberOfPackets (MaxLinks)
integer Packets, Tail

Packets = NumberOfPackets (Link)

if (Packets .eq. LinkBufferLength) then ! Overflow
print *, °'Link ', Link, ’® overflow occurred’
stop

end if

Tail = WrapAroundIncrement (QueueTail (Link), LinkBufferLength)

QueueTail (Link) = Tail

LinkQueue (Link, Tail) = Session

NumberOfPackets (Link) = Packets + 1

return

end

! Dequeues packet, if any, from link-queue in simulator FCFS
Subroutine Dequeue (Link, Sessioan)

integer Session

integer WrapAroundIncrement

include ’ParameterlS.f77° ! MaxLinks, MaxSessions

include 'ParameterlB.f77’ ! LinkBufferLength

integer QueueHead, QueueTail

common / queueblock / LinkQueue (MaxLinks, LinkBufferLength),
QueueHead (MaxLinks), QueueTail (MaxLinks),
NumberQfPackets (MaxLinks)

integer Packets, Head

Packets = NumberOfPackets (Link)

if (Packets .gt. 0) then ! Link has packets waiting
Head = WrapAroundIncrement (QueueHead (Link),

LinkBufferLength)

QueueHead (Link) = Head
Session = LinkQueue (Link, Head)
NumberOfPackets (Link) = Packets -~ 1

else | Link idle
Session = O

end if

return

end

112

! Data used by simulator FCFS for network of Figure 4.1
Block Data Network

include *ParameterLS.f77' | MaxLinks, MaxSessions

common / globalblock / NumberOfLinks, NumberOfSessions

integer TokenBufferLength, OutLinks

common / schemeblock / TokenBufferLength (MaxSessions),
OutLinks (MaxLinks, MaxSessions)

common / functionblock / NumberOfLinksForSession (MaxSessions),
Links (MaxSessions, MaxLinks)

data NumberOfLinks, NumberOfSessions / 2, 3 /

data OutLinks (1,1) /7 2 /, OutLinks (1,2) / 0 /,
OutLinks (2,1) / 0 /, OutLinks (2,3) / 0 /

data NumberOfLinksForSession (1) / 2 /,
Numbe rOfLinksForSession (2) /7 1 /,
Numbe rOfLinksForSession (3) / 1 /

data Links (1,1) 7/ 1 /, Links (1,2) / 2 /, Links (2,1) /7 1 /,
Links (3,1) /7 2 /

data TokenBufferLength (1) / 3 /, TokenBufferLength (2) / 2 /,
TokenBufferLength (3) / 2 /

end

113

::l. - .

1,

Ko h

["

\ 53!

%}} References

500!

P_ {1] Ahuja, V., “Routing and Flow Control in Systems Network Architecture,” IBM Systems
254

%: Journal, Vol. 18, No. 2, 1979, pp. 298-314.

" [2] Bially, T., B. Gold, and S. Seneff, “A Technique for Adaptive Voice Flow Control in
f}i Integrated Packet Networks,” IEEE Transactions on Communications, Vol. COM-28,
Ly

A No. 3, March 1980, pp. 325-333.

‘ '..‘

7 [3] Bially, T., A.J. McLaughlin, and C.J. Weinstein, “Voice Communication in Integrated
,')f‘,‘ Digital Voice and Data Networks,” IEEE Transactions on Communications, Vol. COM-
en 28, No. 9, September 1980, pp. 1478-1490.

W [4] Bullington, K., and J. Fraser, “Engineering Aspects of TASI,” Bell System Technical
Journal, Vol. 38, March 1959, pp. 353-364.

o [5] Cerf, V.G., and R.E. Kahn, “A Protocol for Packet Network Intercommunication,”
‘ " -
e IEEE Transactions on Commaunications, Vol. COM-22, No. 5, May 1974, pp. 637-648.
o
R (6] Chandy, K.M., and J. Misra, “The Drinking Philosophers Problem,” ACM Transactions
f on Programming Languages and Systems, Vol. 6, No. 4, October 1984, pp. 632-646.
%

{’E (7] Coviello, G.J., and P.A. Vena, “Integration of Circuit/Packet Switching by a SENET
, (Slotted Envelope Network) Concept,” Proceedings National Telecommunication Con-
VRN

o ference, New Orleans, LA, December 1975, pp. 42.12-42.17.

)¢

:

W (8] Fuchs, E., and P.E. Jackson, “Estimates of Distributions of Random Variables for
! Certain Computer Communication Traffic Models,” Communications of the ACM, Vol.
. *

13, December 1970, pp. 752-757.

(9] Gafni, E.M., “The Integration of Routing and Flow-Control for Voice and Data in a

Computer Communication Network,” Laboratory for Information and Decision Systems

114

:\. “ak” -F""‘ U0 RO AN LTSN

-y au-*r‘y,r.‘ -(f'
g Y

SRR Caon WA 00 LR OO0 OOV ¥ iy
) ‘ LS B) .. ‘J“ » " ;i'%a".l -’A‘&%e » :.i.!'ﬂ"»‘l 4% 3'1.‘;‘}:.} Ll Rl) :'l () 5‘:’!‘0"‘!’0’2"'&.. L) 5. - "'.‘.’.‘ A0

N N O T T T T T R I R T R T I P RN T PR U rawe -y

ol

s

o

X ‘; Report 1289, Sc.D. Thesis Dissertation, EECS Department, MIT, Cambridge, MA,

;A' ' August 1982.

8

" V':;j (10] Gafni, E.M., and D.P. Bertsekas, “Dynamic Control of Session Input Rates in Commu-

v{ ’ nication Networks,” IEEE Transactions on Automatic Control, Vol. AC-29, No. 11,

. November 1984, pp. 1009-1016.

s

j_‘:vr (11] Gallager,R.G., P.A. Humblet, and P.M. Spira, “A Distributed Algorithm for Minimum-
Bac. Weight Spanning Trees,” ACM Transactions on Programming Languages and Systems,

‘, Vol. 5, No. 1, January 1983, pp. 66-77.

.

ﬁéﬂ‘:‘:, [12] Garey, M.R., and D.S. Johnson, Computers and Intractability (A Guide to the Theory
_;ﬁ ‘ of NP-Completeness), W.H. Freeman and Co., New York, 1979.

:; (13] Gerla, M., and L. Kleinrock, “Flow Control: A Comparative Survey,” IEEE Transac-

J‘\: tions on Commaunications, Vol. COM-28, No. 4, April 1980, pp. 553-574.

_}.:' [14] Gold, B., “Digital Speech Networks,” Proceedings IEEE, Vol. 65, November 1977, pp.

\E 1636-1658.

" ")

.‘ (15] Golestaani, S.J., “A Unified Theory of Flow Control and Routing in Data Communi-
'f:"'": cation Networks,” Laboratory for Information and Decision Systems Report 363, Ph.D.

:':'_"_i Thesis Dissertation, EECS Department, MIT, Cambridge, MA, January 1980.

i';\ [16] Graves, S.C., H.C. Meal, D. Stefek, and A.H. Zeghmi, “Scheduling of Re-entrant Flow
., Shops,” Working Paper, Sloan School of Management, MIT, Cambridge, MA, Novem-
s ber 23, 1982.

-: _.: (17] Hahne, E.L., “Round Robin Scheduling for Fair Flow Control in Data Communication

}“.’ Networks,” Ph.D. Thesis Proposal, Department of Electrical Engineering and Com-

) . . puter Science, MIT, Cambridge, MA, April 1985.

o

19

3 115

Yo N o e
R

:§§£

x*‘\ (18] Hayden, H.P., “Voice Flow Control in Integrated Packet Networks,” Laboratory for
, R Information and Decision Systems Report 1152, S M. Thesis Dissertation, EECS De-
4_3;4 partment, MIT, Cambridge, MA, October 1981.
'
L\ (19] Hitz, K.L., “Scheduling of Flexible Flow Shops,” Laboratory for Information and De-

cision Systems Report 879, MIT, Cambridge, MA, March 1979.

%

S :;7; (20] Ibe, O.C., “Flow Control and Routing in an Integrated Voice and Data Communication
ﬁ-‘.‘: Network,” Laboratory for Information and Decision Systems Report 1115, Ph.D. Thesis
NG Dissertation, MIT, Cambridge, MA, August 1981.

9

:I-n; [21] Jaffe, J.M., “Bottleneck Flow Control,” IEEE Transactions on Communicaticns, Vol.
A% COM-29, No. 7, July 1981, pp. 954-962.
s
; 'bf [22] Kekre, H.B., C.L. Saxena, and M. Khalid, “Buffer Behaviour For Mixed Arrivals and
‘. ff.‘-: Single Server With Random Interruptions,” IEEE Transactions on Communications,
*-‘- Vol. COM-28, No. 1, January 1980, pp. 59-64.
L

:1 (23] Kogge, P.M., The Architecture of Pipelined Computers, Hemisphere Publishing Corpo-
N ‘ ration, McGraw-Hill, New York, 1981.
-'{:; (24] Mosely, J., “Asynchronous Distributed Flow Control Algorithms,” Laboratory for In-
‘ % formation and Decision Systems Report 1415, Ph.D. Thesis Dissertation, MIT, Cam-
;!V bridge, MA, June 1984.

2 A

[25] Orlin, J.B., “The Complexity of Dynamic Languages and Dynamic Optimization Prob-

'y
b L)
¢

3 ‘Jr;l
a
¥
2

lems,” Proceedings ACM STOC, Milwaukee, 1081, pp. 218-227.

[26] Oshinsky, D.A., “Use of Fair Rate Assignment Algorithms in Networks with Bursty

Sessions,” S.M. Thesis, Department of Electrical Engineering and Computer Science,

MIT, Cambridge, MA, May 1984.

R e
i v ’ N1
r .'*":L""..“- R -

.'u/ ll’ .. '

RS .

1 116

CAdy) AN 0 Y ey G R (e e A S N A S S N C O S RN
”"’s L u’u a’é‘ “’ ‘f - LR £44] LOLOLO Y n"'z‘ -xk'\‘ ‘!‘s .i"..\‘!’lk LRELENTY ‘? ' AN N ‘)

: N .‘I
"‘ B
5
g
“‘.’2 [27] Papadimitriou, C.H., and K. Steiglitz, Combinatorial Optimization: Algorithms and
o
ARRE Complezity, Prentice-Hall, Englewood Cliffs, N.J., 1982.
i .
f"‘«; . [28] Raubold, E., and J. Haenle, “A Method of Deadlock-Free Resource Allocation and
‘ot
'...r:(Flow Control in Packet Networks,” Proceedings, IEEE Srd International Conference on
.
‘ Computer Communications, Toronto, Ontario, Canada, August 1976, pp. 483-487.
i
;.1’" [29] Reiser, M., “A Queueing Network Analysis of Computer Communication Networks
foof
N With Window Flow Control,” IEEE Transactions on Communications, Vol. COM-27,
o ,4 No. 8, August 1979, pp. 1199-1209.
N |
*'{.1: [30] Rinde, J., and A. Caisse, “Passive Flow Control Techniques For Distributed Networks,”
» F'
- Proceedings, International Symposium on Flow Control in Computer Networks, Ver-
sailles, France, February 1979, J.L. Grange, and M. Gien, eds., North Holland, Ams-
Y terdam, pp. 155-160.
Ny
X [31] Schwartz, M., and T.E. Stern, “Routing Techniques Used in Computer Communication
‘ Networks,” IEEE Transactions on Commaunications, Vol. COM-28, No. 4, April 1980,
s pp. 539-552.
,““ N [32] Weinstein, C.J., and J.W. Forgie, “Experience With Speech Communication in Packet
%‘.;ﬁ
&K Networks,” IEEE Journal on Selected Areas in Communications, Vol. SAC-1, No. 6,
"-"‘:.'
T December 1983, pp. 963-980.
'\‘: .
A [33] Weinstein, C.J., and E.M. Hofstetter, “The Tradeoff Between Delay and TASI Ad-
" vantage in a Packetized Speech Multiplexer,” IEEE Transactions on Commaunications,
o Vol. COM-27, November 1979, pp. 1716-1720.
..* :
e
4':::“: [34] Williams, G.F., and A. Leon-Garcia, “Performance Analysis of Integrated Voice and
NP
} Data Hybrid-Switched Links,” IEEE Transactions on Communications, Vol. COM-32,
» No. 8, June 1984, pp. 695-706.
A%
i :
R 117

. - - 9 ' R - \‘-._-;. ‘- ...- -.-hp_\-_v‘-._.. .
a.'\,ahg ‘,. \ ~. A, -\5-\" A '“v. o ,-‘. Lt A St \. -.f", AN ety

